Melatonin role in formation of T helper subpopulations co-expressing Th17 and Treg markers
Еlena М. Kuklina , Natalya S. Glebezdina , Irina V. Nekrasova
Genes & Cells ›› 2022, Vol. 17 ›› Issue (4) : 125 -132.
Melatonin role in formation of T helper subpopulations co-expressing Th17 and Treg markers
BACKGROUND: One of the main pineal hormones, melatonin, has multifunctional activity including ability to effectively regulate immune cells. Subpopulations of Th17 (T helpers producing interleukin 17) and Treg (regulatory T cells) are under the hormone direct control. It has now been established that both subpopulations are heterogeneous, have high plasticity, and non-classical Th17/Treg variants play leading role in the pathogenesis of various diseases.
AIM: To evaluate exogenous melatonin effects on classical Th17 and Treg subpopulations, as well as non-classical population of cells co-expressing Th17 and Treg markers.
METHODS: The objects of the study were leukocytes of healthy donors. Differentiation of Th17 and Treg was assessed in vitro in response to polyclonal activation (anti-CD3/CD28) by the presence and level of corresponding markers using flow cytometry. The role of specific receptors in melatonin-dependent regulation of Treg and Th17 was determined by inhibitory analysis.
RESULTS: It has been shown that the hormone in concentration corresponding to its level in peripheral blood during pharmacological usage is able not only to regulate formation of classical Th17 and Treg populations by suppressing the differentiation of CD4+FOXP3+ cells, but also to induce formation of T lymphocytes that simultaneously express Th17 and Treg cells’ markers.
CONCLUSION: The effects of melatonin on both classical Th17 and Treg populations and non-classical one lead to a shift in the balance towards Th17 cells, which may contribute to inflammation development in various pathological situations.
Th17 / Treg / CD4+RORγt+FOXP3+ T cells / melatonin / melatonin receptors
| [1] |
Drazen DL, Klein SL, Yellon SM, Nelson RJ. In vitro melatonin treatment enhances splenocyte proliferation in prairie voles. J Pineal Res. 2000;28(1):34–40. doi: 10.1034/j.1600-079x.2000.280105.x |
| [2] |
Drazen D.L., Klein S.L., Yellon S.M., Nelson R.J. In vitro melatonin treatment enhances splenocyte proliferation in prairie voles // J Pineal Res. 2000. Vol. 28, N 1. P. 34–40. doi: 10.1034/j.1600-079x.2000.280105.x |
| [3] |
Arias J, Melean E, Valero N, et al. Efecto de la melatonina sobre la proliferación linfocitaria y la producción de interleucina-2 (IL-2) e interleucina-1 beta (IL-1 beta) en esplenocitos de ratón. Investigación clínica. 2003;44(1):41–50. (In Spain). |
| [4] |
Arias J., Melean E., Valero N., et al. Efecto de la melatonina sobre la proliferación linfocitaria y la producción de interleucina-2 (IL-2) e interleucina-1 beta (IL-1 beta) en esplenocitos de ratón // Investigación clínica. 2003. Vol. 44, N 1. P. 41–50. (In Spain). |
| [5] |
Espino J, Rodríguez AB, Pariente JA. The inhibition of TNF-α-induced leucocyte apoptosis by melatonin involves membrane receptor MT1/MT2 interaction. J Pineal Res. 2013;54(4):442–452. doi: 10.1111/jpi.12042 |
| [6] |
Espino J., Rodríguez A.B., Pariente J.A. The inhibition of TNF-α-induced leucocyte apoptosis by melatonin involves membrane receptor MT1/MT2 interaction // J Pineal Res. 2013. Vol. 54, N 4. P. 442–452. doi: 10.1111/jpi.12042 |
| [7] |
Kuklina EM. Melatonin as potential inducer of Th17 cell differentiation. Med Hypotheses. 2014;83(3):404–406. doi: 10.1016/j.mehy.2014.07.006 |
| [8] |
Kuklina E.M. Melatonin as potential inducer of Th17 cell differentiation // Med Hypotheses. 2014. Vol. 83, N 3. P. 404–406. doi: 10.1016/j.mehy.2014.07.006 |
| [9] |
Kuklina EM, Glebezdina NS, Nekrasova IV. Role of melatonin in the regulation of differentiation of t cells producing interleukin-17 (Th17). Bull Exp Biol Med. 2016;160(5):656–658. |
| [10] |
Куклина Е.М., Глебездина Н.С., Некрасова И.В. Роль мелатонина в контроле дифференцировки Т-лимфоцитов, продуцирующих интерлейкин-17 (Th17) // Бюллетень экспериментальной биологии и медицины. 2015. Т. 160, № 11. С. 604–607. |
| [11] |
Bedoya SK, Lam B, Lau K, et al. Th17 cells in immunity and autoimmunity. Clin Dev Immunol. 2013;2013:986789. doi: 10.1155/2013/986789 |
| [12] |
Bedoya S.K., Lam B., Lau K., et al. Th17 cells in immunity and autoimmunity // Clin Dev Immunol. 2013. Vol. 2013. P. 986789. doi: 10.1155/2013/986789 |
| [13] |
Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011;74(1):1–13. doi: 10.1111/j.1365-3083.2011.02536.x |
| [14] |
Jadidi-Niaragh F., Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis // Scand J Immunol. 2011. Vol. 74, N 1. P. 1–13. doi: 10.1111/j.1365-3083.2011.02536.x |
| [15] |
Kanamori M, Nakatsukasa H, Okada M, et al. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 2016;37(11):803–811. doi: 10.1016/j.it.2016.08.012 |
| [16] |
Kanamori M., Nakatsukasa H., Okada M., et al. Induced regulatory T cells: their development, stability, and applications // Trends Immunol. 2016. Vol. 37, N 11. P. 803–811. doi: 10.1016/j.it.2016.08.012 |
| [17] |
Jeffery HC, Braitch MK, Brown S, Oo YH. Clinical potential of regulatory T cell therapy in liver diseases: an overview and current perspectives. Front Immunol. 2016;7:334. doi: 10.3389/fimmu.2016.00334 |
| [18] |
Jeffery H.C., Braitch M.K., Brown S., Oo Y.H. Clinical potential of regulatory T cell therapy in liver diseases: an overview and current perspectives // Front Immunol. 2016. Vol. 7. P. 334. doi: 10.3389/fimmu.2016.00334 |
| [19] |
Shevyrev D, Tereshchenko V. Treg heterogeneity, function, and homeostasis. Front Immunol. 2020;10:3100. doi: 10.3389/fimmu.2019.03100 |
| [20] |
Shevyrev D., Tereshchenko V. Treg heterogeneity, function, and homeostasis // Front Immunol. 2020. Vol. 10. P. 3100. doi: 10.3389/fimmu.2019.03100 |
| [21] |
Cosmi L, Liotta F, Maggi E, et al. Th17 cells: new players in asthma pathogenesis. Allergy. 2011;66(8):989–998. doi: 10.1111/j.1398-9995.2011.02576.x |
| [22] |
Cosmi L., Liotta F., Maggi E., et al. Th17 cells: new players in asthma pathogenesis // Allergy. 2011. Vol. 66, N 8. P. 989–998. doi: 10.1111/j.1398-9995.2011.02576.x |
| [23] |
Gagliani N, Amezcua Vesely MC, Iseppon A, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015;523(7559):221–225. doi: 10.1038/nature14452 |
| [24] |
Gagliani N., Amezcua Vesely M.C., Iseppon A., et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation // Nature. 2015. Vol. 523, N 7559. P. 221–225. doi: 10.1038/nature14452 |
| [25] |
Koenen HJPM, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17–producing cells. Blood. 2008;112(6):2340–2352. doi: 10.1182/blood-2008-01-133967 |
| [26] |
Koenen H.J.P.M., Smeets R.L., Vink P.M., et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17–producing cells // Blood. 2008. Vol. 112, N 6. P. 2340–2352. doi: 10.1182/blood-2008-01-133967 |
| [27] |
Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62–68. doi: 10.1038/nm.3432 |
| [28] |
Komatsu N., Okamoto K., Sawa S., et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis // Nat Med. 2014. Vol. 20, N 1. P. 62–68. doi: 10.1038/nm.3432 |
| [29] |
Gooneratne NS, Edwards AYZ, Zhou C, et al. Melatonin pharmacokinetics following two different oral surge-sustained release doses in older adults. J Pineal Res. 2012;52(4):437–445. doi: 10.1111/j.1600-079X.2011.00958.x |
| [30] |
Gooneratne N.S., Edwards A.Y.Z., Zhou C., et al. Melatonin pharmacokinetics following two different oral surge-sustained release doses in older adults // J Pineal Res. 2012. Vol. 52, N 4. P. 437–445. doi: 10.1111/j.1600-079X.2011.00958.x |
| [31] |
Cecon E, Oishi A, Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol. 2018;175(16):3263–3280. doi: 10.1111/bph.13950 |
| [32] |
Cecon E., Oishi A., Jockers R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias // Br J Pharmacol. 2018. Vol. 175, N 16. P. 3263–3280. doi: 10.1111/bph.13950 |
| [33] |
Prado DS, Cattley RT, Shipman CW, et al. Synergistic and additive interactions between receptor signaling networks drive the regulatory T cell versus T helper 17 cell fate choice. J Biol Chem. 2021;297(6):101330. doi: 10.1016/j.jbc.2021.101330 |
| [34] |
Prado D.S., Cattley R.T., Shipman C.W., et al. Synergistic and additive interactions between receptor signaling networks drive the regulatory T cell versus T helper 17 cell fate choice // J Biol Chem. 2021. Vol. 297, N 6. P. 101330. doi: 10.1016/j.jbc.2021.101330 |
| [35] |
Glebezdina NS, Olina AA, Nekrasova IV, et al. Molecular mechanisms of control of differentiation of regulatory T-lymphocytes by exogenous melatonin. Dokl Biochem Biophys. 2019;484(1):13–16. doi: 10.1134/S1607672919010058 |
| [36] |
Глебездина Н.С., Олина А.А., Некрасова И.В., Куклина Е.М. Молекулярные механизмы контроля дифференцировки регуляторных т-лимфоцитов экзогенным мелатонином // Доклады Академии наук. 2019. Т. 484, № 2. С. 224–227. doi: 10.31857/S0869-56524842224-227 |
| [37] |
Yazdani MR, Khosropanah S, Doroudchi M. Interleukin-17 production by CD4+CD45RO+Foxp3+ T cells in peripheral blood of patients with atherosclerosis. Arch Med Sci Atheroscler Dis. 2019;4:215–224. doi: 10.5114/amsad.2019.87525 |
| [38] |
Yazdani M.R., Khosropanah S., Doroudchi M. Interleukin-17 production by CD4+CD45RO+Foxp3+ T cells in peripheral blood of patients with atherosclerosis // Arch Med Sci Atheroscler Dis. 2019. Vol. 4. P. 215–224. doi: 10.5114/amsad.2019.87525 |
| [39] |
Liu X, Gao N, Li M, et al. Elevated levels of CD4+CD25+FoxP3+ T cells in systemic sclerosis patients contribute to the secretion of IL-17 and immunosuppression dysfunction. PloS One. 2013;8(6):e64531. doi: 10.1371/journal.pone.0064531 |
| [40] |
Liu X., Gao N., Li M., et al. Elevated levels of CD4+CD25+FoxP3+ T cells in systemic sclerosis patients contribute to the secretion of IL-17 and immunosuppression dysfunction // PloS One. 2013. Vol. 8, N 6. P. e64531. doi: 10.1371/journal.pone.0064531 |
| [41] |
Bovenschen HJ, van de Kerkhof PC, van Erp PE, et al. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Invest Dermatol. 2011;131(9):1853–1860. doi: 10.1038/jid.2011.139 |
| [42] |
Bovenschen H.J., van de Kerkhof P.C., van Erp P.E., et al. Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin // J Invest Dermatol. 2011. Vol. 131, N 9. P. 1853–1860. doi: 10.1038/jid.2011.139 |
Eco-Vector
/
| 〈 |
|
〉 |