Lipopolysaccharide-induced model of inflammation in cells culture

Altynbek A. Islaev , Tamara T. Chibirova , Elena A. Takoeva , Romesh I. Kokaev

Genes & Cells ›› 2022, Vol. 17 ›› Issue (4) : 19 -30.

PDF
Genes & Cells ›› 2022, Vol. 17 ›› Issue (4) : 19 -30. DOI: 10.23868/gc375311
Reviews
review-article

Lipopolysaccharide-induced model of inflammation in cells culture

Author information +
History +
PDF

Abstract

Inflammation is a non-specific process that underlies the pathogenesis of many diseases, including COVID-19. The study of the mechanisms and molecular pathways of this phenomenon is carried out using various models, including in vitro investigations on cell cultures. The most accessible model for reproduction is the lipopolysaccharide-induced one.

This review analyzes the scientific papers in which the model was represented in vitro. It was found that inflammation caused by lipopolysaccharide is realized by activating classical signaling pathways (nuclear factor "kappa-bi", mitogen-activated protein kinase, etc.), changes of expression of circular and non-coding RNAs, etc. Evaluation of the working model of inflammation was carried out by many parameters, the most important of which was the concentration of pro-inflammatory cytokines (IL-6, IL-8, IL-1β, TNF-α). Inflammation through stimulation with lipopolysaccharide was reproduced in cultures of different cells, however, it was most easily reproduced in the culture of monocytes and macrophages, which is explained by their conversion to the M1 phenotype. The co-cultivation of different cells made it possible to study the mechanisms of the pathological process in the model of inflammation more fully.

Keywords

inflammation / lipopolysaccharide-induced model / cell culture / cytokines / COVID-19

Cite this article

Download citation ▾
Altynbek A. Islaev, Tamara T. Chibirova, Elena A. Takoeva, Romesh I. Kokaev. Lipopolysaccharide-induced model of inflammation in cells culture. Genes & Cells, 2022, 17(4): 19-30 DOI:10.23868/gc375311

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arulselvan P, Fard MT, Tan WS, et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev. 2016;2016:5276130. doi: 10.1155/2016/5276130

[2]

Arulselvan P., Fard M.T., Tan W.S., et al. Role of antioxidants and natural products in inflammation // Oxid Med Cell Longev. 2016. Vol. 2016. P. 5276130. doi: 10.1155/2016/5276130

[3]

Germolec DR, Shipkowski KA, Frawley RP, Evans E. Markers of Inflammation. Methods Mol Biol. 2018;1803:57–79. doi: 10.1007/978-1-4939-8549-4_5

[4]

Germolec D.R., Shipkowski K.A., Frawley R.P., Evans E. Markers of Inflammation // Methods Mol. Biol. 2018. Vol. 1803. P. 57–79. doi: 10.1007/978-1-4939-8549-4_5

[5]

Yokota S, Kuroiwa E, Nishioka K. Novel coronavirus disease (COVID-19) and cytokine storms. For more effective treatments from the viewpoints of an inflammatory pathophysiology perspective. Infektsionnye bolezni: novosti, mneniya, obuchenie (Infectious Diseases: News, Opinions, Training). 2020;9(4):13–25. (In Russ). doi.org/10.33029/2305-3496-2020-9-4-13-25

[6]

Йокота Ш., Куройва Е., Нишиока К. Новая коронавирусная болезнь (COVID-19) и «цитокиновый шторм». Перспективы эффективного лечения с точки зрения патофизиологии воспалительного процесса // Инфекционные болезни: новости, мнения, обучение. 2020. Т. 9, № 4. С. 13–25. doi: 10.33029/2305-3496-2020-9-4-13-25

[7]

Tasneem S, Liu B, Li B, et al. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res. 2019;139:126–140. doi: 10.1016/j.phrs.2018.11.001

[8]

Tasneem S., Liu B., Li B., et al. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents // Pharmacol Res. 2019. Vol. 139. P. 126–140. doi: 10.1016/j.phrs.2018.11.001

[9]

Kahkhaie KR, Mirhosseini A, Aliabadi A, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019;27(5):885–900. doi: 10.1007/s10787-019-00607-3

[10]

Kahkhaie K.R., Mirhosseini A., Aliabadi A., et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system // Inflammopharmacology. 2019. Vol. 27, N 5. P. 885–900. doi: 10.1007/s10787-019-00607-3

[11]

Jiao L, Jiang M, Liu J, et al. Nuclear factor-kappa B activation inhibits proliferation and promotes apoptosis of vascular smooth muscle cells. Vascular. 2018;26(6):634–640. doi: 10.1177/1708538118787125

[12]

Jiao L., Jiang M., Liu J., et al. Nuclear factor-kappa B activation inhibits proliferation and promotes apoptosis of vascular smooth muscle cells // Vascular. 2018. Vol. 26, N 6. P. 634–640. doi: 10.1177/1708538118787125

[13]

Moens U, Kostenko S, Sveinbjørnsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes (Basel). 2013;4(2):101–133. doi: 10.3390/genes4020101

[14]

Moens U., Kostenko S., Sveinbjørnsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation // Genes (Basel). 2013. Vol. 4, N 2. P. 101–133. doi: 10.3390/genes4020101

[15]

Niu L, Fang Y, Yao X, et al. TNFα activates MAPK and Jak-Stat pathways to promote mouse Müller cell proliferation. Exp Eye Res. 2021;202:108353. doi: 10.1016/j.exer.2020.108353

[16]

Niu L., Fang Y., Yao X., et al. TNFα activates MAPK and Jak-Stat pathways to promote mouse Müller cell proliferation // Exp Eye Res. 2021. Vol. 202. P. 108353. doi: 10.1016/j.exer.2020.108353

[17]

Molero-Abraham M, Sanchez-Trincado JL, Gomez-Perosanz M, et al. Human oral epithelial cells impair bacteria-mediated maturation of dendritic cells and render t cells unresponsive to stimulation. Front Immunol. 2019;10:1434. doi: 10.3389/fimmu.2019.01434

[18]

Molero-Abraham M., Sanchez-Trincado J.L., Gomez-Perosanz M., et al. Human oral epithelial cells impair bacteria-mediated maturation of dendritic cells and render t cells unresponsive to stimulation // Front Immunol. 2019. Vol. 10. P. 1434. doi: 10.3389/fimmu.2019.01434

[19]

Jeon JW, Ha UH, Paek SH. In vitro inflammation inhibition model based on semi-continuous toll-like receptor biosensing. PloS One. 2014;9(8):e105212. doi: 10.1371/journal.pone.0105212

[20]

Jeon J.W., Ha U.H., Paek S.H. In vitro inflammation inhibition model based on semi-continuous toll-like receptor biosensing // PloS One. 2014. Vol. 9, N 8. P. e105212. doi: 10.1371/journal.pone.0105212

[21]

Clement M, Forbester JL, Marsden M, et al. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses. Nat Commun. 2022;13(1):5294. doi: 10.1038/s41467-022-32587-4

[22]

Clement M., Forbester J.L., Marsden M., et al. IFITM3 restricts virus-induced inflammatory cytokine production by limiting Nogo-B mediated TLR responses // Nat Commun. 2022. Vol. 13, N 1. P. 5294. doi: 10.1038/s41467-022-32587-4

[23]

Eze FI, Uzor PF, Ikechukwu P, et al. In vitro and in vivo models for anti-inflammation: an evaluative review. INNOSC Theranostics and Pharmacological Sciences. 2019;2(2):3–15. doi: 10.36922/itps.v2i2.775

[24]

Eze F.I., Uzor P.F., Ikechukwu P., et al. In vitro and in vivo models for anti-inflammation: an evaluative review // INNOSC Theranostics and Pharmacological Sciences. 2019. Vol. 2, N 2. P. 3–15. doi: 10.36922/itps.v2i2.775

[25]

Potapovich AI, Suhan TO, Antipova OA, et al. Research of antioxidant and anti-inflammatory activity ofrutine complex with bivalent iron. Experimental Biology and Biotechnology. 2019;1:3–12. (In Russ). doi: 10.33581/2521-1722-2019-1-3-12

[26]

Потапович А.И., Сухан Т.О., Антипова О.А., Костюк В.А. Исследование антиоксидантной и противовоспалительной активности комплекса рутина с двухвалентным железом // Экспериментальная биология и биотехнология. 2019. № 1. С. 3–12. doi: 10.33581/2521-1722-2019-1-3-12

[27]

Howe AM, Cosgrave A, Ó’Murchú M, et al. Characterising lipoteichoic acid as an in vitro model of acute neuroinflammation. Int Immunopharmacol. 2020;85:106619. doi: 10.1016/j.intimp.2020.106619

[28]

Howe A.M., Cosgrave A., Ó’Murchú M., et al. Characterising lipoteichoic acid as an in vitro model of acute neuroinflammation // Int Immunopharmacol. 2020. Vol. 85. P. 106619. doi: 10.1016/j.intimp.2020.106619

[29]

Agliano F., Karlinsey K.S., Ragazzi M., et al. A benzimidazole inhibitor attenuates sterile inflammation induced in a model of systemic autoinflammation in female mice. Sci Rep. 2020;10(1):12100. doi: 10.1038/s41598-020-68985-1

[30]

Agliano F., Karlinsey K.S., Ragazzi M., et al. A benzimidazole inhibitor attenuates sterile inflammation induced in a model of systemic autoinflammation in female mice // Sci Rep. 2020. Vol. 10, N 1. P. 12100. doi: 10.1038/s41598-020-68985-1

[31]

Joshi A, Soni A, Acharya S. In vitro models and ex vivo systems used in inflammatory bowel disease. In Vitro Models. 2022;1:213–227. doi.org/10.1007/s44164-022-00017-w

[32]

Joshi A., Soni A., Acharya S. In vitro models and ex vivo systems used in inflammatory bowel disease // In Vitro Models. 2022. Vol. 1. P. 213–227. doi.org/10.1007/s44164-022-00017-w

[33]

Rathinam VAK, Zhao Y, Shao F. Innate immunity to intracellular LPS. Nat Immunol. 2019;20(5):527–533. doi: 10.1038/s41590-019-0368-3

[34]

Rathinam V.A.K., Zhao Y., Shao F. Innate immunity to intracellular LPS // Nat Immunol. 2019. Vol. 20, N 5. P. 527–533. doi: 10.1038/s41590-019-0368-3

[35]

Vallance TM, Zeuner MT, Williams HF, et al. Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis. Mediators Inflamm. 2017;2017:9605894. doi: 10.1155/2017/9605894

[36]

Vallance T.M., Zeuner M.T., Williams H.F., et al. Toll-like receptor 4 signalling and its impact on platelet function, thrombosis, and haemostasis // Mediators Inflamm. 2017. Vol. 2017. P. 9605894. doi: 10.1155/2017/9605894

[37]

Wang S, Ni L, Fu X, et al. A sulfated polysaccharide from saccharina japonica suppresses LPS-induced inflammation both in a macrophage cell model via blocking MAPK/NF-κB signal pathways in vitro and a zebrafish model of embryos and larvae in vivo. Mar Drugs. 2020;18(12):593. doi: 10.3390/md18120593

[38]

Wang S., Ni L., Fu X., et al. A sulfated polysaccharide from saccharina japonica suppresses LPS-induced inflammation both in a macrophage cell model via blocking MAPK/NF-κB signal pathways in vitro and a zebrafish model of embryos and larvae in vivo // Mar Drugs. 2020. Vol. 18, N 12. P. 593. doi: 10.3390/md18120593

[39]

Ai M, Lin S, Zhang M, et al. Cirsilineol attenuates LPS-induced inflammation in both in vivo and in vitro models via inhibiting TLR-4/NFkB/IKK signaling pathway. J Biochem Mol Toxicol. 2021;35(8):e22799. doi: 10.1002/jbt.22799

[40]

Ai M., Lin S., Zhang M., et al. Cirsilineol attenuates LPS-induced inflammation in both in vivo and in vitro models via inhibiting TLR-4/NFkB/IKK signaling pathway // J Biochem Mol Toxicol. 2021. Vol. 35, N 8. P. e22799. doi: 10.1002/jbt.22799

[41]

Zou XG, Shim YY, Cho JY, et al. Flaxseed orbitides, linusorbs, inhibit LPS-induced THP-1 macrophage inflammation. RSC Adv. 2020;10(38):22622–22630. doi: 10.1039/c9ra09058d

[42]

Zou X.G., Shim Y.Y., Cho J.Y., et al. Flaxseed orbitides, linusorbs, inhibit LPS-induced THP-1 macrophage inflammation // RSC Adv. 2020. Vol. 10, N 38. P. 22622–22630. doi: 10.1039/c9ra09058d

[43]

Ishikawa F, Matsubara T, Koyama T, et al. Whey protein hydrolysate mitigates both inflammation and endotoxin tolerance in THP-1 human monocytic leukemia cells. Immun Inflamm Dis. 2022;10(12):e737. doi: 10.1002/iid3.737

[44]

Ishikawa F., Matsubara T., Koyama T., et al. Whey protein hydrolysate mitigates both inflammation and endotoxin tolerance in THP-1 human monocytic leukemia cells // Immun Inflamm Dis. 2022. Vol. 10, N 12. P. e737. doi: 10.1002/iid3.737

[45]

Meng Q, Guo P, Jiang Z, et al. Dexmedetomidine inhibits LPS-induced proinflammatory responses via suppressing HIF1α-dependent glycolysis in macrophages. Aging (Albany NY). 2020;12(10):9534–9548. doi: 10.18632/aging.103226

[46]

Meng Q., Guo P., Jiang Z., et al. Dexmedetomidine inhibits LPS-induced proinflammatory responses via suppressing HIF1α-dependent glycolysis in macrophages // Aging (Albany NY). 2020. Vol. 12, N 10. P. 9534–9548. doi: 10.18632/aging.103226

[47]

Sul OJ, Ra SW. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules. 2021;26(22):6949. doi: 10.3390/molecules26226949

[48]

Sul O.J., Ra S.W. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells // Molecules. 2021. Vol. 26, N 22. P. 6949. doi: 10.3390/molecules26226949

[49]

Sun J, Wang X, Wang D, et al. circAtp9b knockdown alleviates LPS-caused inflammation provided that microRNA-27a is upregulated. Int Immunopharmacol. 2020;78:105925. doi: 10.1016/j.intimp.2019.105925

[50]

Sun J., Wang X., Wang D., et al. circAtp9b knockdown alleviates LPS-caused inflammation provided that microRNA-27a is upregulated // Int Immunopharmacol. 2020. Vol. 78. P. 105925. doi: 10.1016/j.intimp.2019.105925

[51]

Wang JW, Pan YB, Cao YQ, et al. Loganin alleviates LPS-activated intestinal epithelial inflammation by regulating TLR4/NF-κB and JAK/STAT3 signaling pathways. Kaohsiung J Med Sci. 2020;36(4):257–264. doi: 10.1002/kjm2.12160

[52]

Wang J.W., Pan Y.B., Cao Y.Q., et al. Loganin alleviates LPS-activated intestinal epithelial inflammation by regulating TLR4/NF-κB and JAK/STAT3 signaling pathways // Kaohsiung J Med Sci. 2020. Vol. 36, N 4. P. 257–264. doi: 10.1002/kjm2.12160

[53]

Han D, Fang R, Shi R, et al. LncRNA NKILA knockdown promotes cell viability and represses cell apoptosis, autophagy and inflammation in lipopolysaccharide-induced sepsis model by regulating miR-140-5p/CLDN2 axis. Biochem Biophys Res Commun. 2021;559:8–14. doi: 10.1016/j.bbrc.2021.04.074

[54]

Han D., Fang R., Shi R., et al. LncRNA NKILA knockdown promotes cell viability and represses cell apoptosis, autophagy and inflammation in lipopolysaccharide-induced sepsis model by regulating miR-140-5p/CLDN2 axis // Biochem Biophys Res Commun. 2021. Vol. 559. P. 8–14. doi: 10.1016/j.bbrc.2021.04.074

[55]

Zhang Y, Anoopkumar-Dukie S, Mallik SB, et al. SIRT1 and SIRT2 modulators reduce LPS-induced inflammation in HAPI microglial cells and protect SH-SY5Y neuronal cells in vitro. J Neural Transm (Vienna). 2021;128(5):631–644. doi: 10.1007/s00702-021-02331-1

[56]

Zhang Y., Anoopkumar-Dukie S., Mallik S.B., et al. SIRT1 and SIRT2 modulators reduce LPS-induced inflammation in HAPI microglial cells and protect SH-SY5Y neuronal cells in vitro // J Neural Transm (Vienna). 2021. Vol. 128, N 5. P. 631–644. doi: 10.1007/s00702-021-02331-1

[57]

Li M, Liu Y, Fu Y, et al. Interleukin-35 inhibits lipopolysaccharide-induced endothelial cell activation by downregulating inflammation and apoptosis. Exp Cell Res. 2021;407(2):112784. doi: 10.1016/j.yexcr.2021.112784

[58]

Li M., Liu Y., Fu Y., et al. Interleukin-35 inhibits lipopolysaccharide-induced endothelial cell activation by downregulating inflammation and apoptosis // Exp Cell Res. 2021. Vol. 407, N 2. P. 112784. doi: 10.1016/j.yexcr.2021.112784

[59]

Li J, Qin Y, Chen Y, et al. Mechanisms of the lipopolysaccharide-induced inflammatory response in alveolar epithelial cell/macrophage co-culture. Exp Ther Med. 2020;20(5):76. doi: 10.3892/etm.2020.9204

[60]

Li J., Qin Y., Chen Y., et al. Mechanisms of the lipopolysaccharide-induced inflammatory response in alveolar epithelial cell/macrophage co-culture // Exp Ther Med. 2020. Vol. 20, N 5. P. 76. doi: 10.3892/etm.2020.9204

[61]

Drasler B, Karakocak BB, Tankus EB, et al. An inflamed human alveolar model for testing the efficiency of anti-inflammatory drugs in vitro. Front Bioeng Biotechnol. 2020;8:987. doi: 10.3389/fbioe.2020.00987

[62]

Drasler B., Karakocak B.B., Tankus E.B., et al. An inflamed human alveolar model for testing the efficiency of anti-inflammatory drugs in vitro // Front Bioeng Biotechnol. 2020. Vol. 8. P. 987. doi: 10.3389/fbioe.2020.00987

[63]

Leisengang S, Heilen LB, Klymiuk MC, et al. Neuroinflammation in primary cultures of the rat spinal dorsal horn is attenuated in the presence of adipose tissue–derived medicinal signalling cells (AdMSCs) in a Co-cultivation model. Mol Neurobiol. 2022;59:475–494. doi: 10.1007/s12035-021-02601-9

[64]

Leisengang S., Heilen L.B., Klymiuk M.C., et al. Neuroinflammation in primary cultures of the rat spinal dorsal horn is attenuated in the presence of adipose tissue–derived medicinal signalling cells (AdMSCs) in a Co-cultivation model // Mol Neurobiol. 2022. Vol. 59. P. 475–494. doi: 10.1007/s12035-021-02601-9

[65]

Goshi N, Morgan RK, Lein PJ, et al. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation. J Neuroinflammation. 2020;17(1):155. doi: 10.1186/s12974-020-01819-z

[66]

Goshi N., Morgan R.K., Lein P.J., et al. A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation // J Neuroinflammation. 2020. Vol. 17, N 1. P. 155. doi: 10.1186/s12974-020-01819-z

[67]

Lu W, Xu ZM, Liu Q, et al. Inhibitory effect of bovine adipose-derived mesenchymal stem cells on lipopolysaccharide induced inflammation of endometrial epithelial cells in dairy cows. Front Vet Sci. 2021;8:726328. doi: 10.3389/fvets.2021.726328

[68]

Lu W., Xu Z.M., Liu Q., et al. Inhibitory effect of bovine adipose-derived mesenchymal stem cells on lipopolysaccharide induced inflammation of endometrial epithelial cells in dairy cows // Front Vet Sci. 2021. Vol. 8. P. 726328. doi: 10.3389/fvets.2021.726328

[69]

Zhang J, Li P, Zhao G, et al. Mesenchymal stem cell-derived extracellular vesicles protect retina in a mouse model of retinitis pigmentosa by anti-inflammation through miR-146a-Nr4a3 axis. Stem Cell Res Ther. 2022;13(1):394. doi: 10.1186/s13287-022-03100-x

[70]

Zhang J., Li P., Zhao G., et al. Mesenchymal stem cell-derived extracellular vesicles protect retina in a mouse model of retinitis pigmentosa by anti-inflammation through miR-146a-Nr4a3 axis // Stem Cell Res Ther. 2022. Vol. 13, N 1. P. 394. doi: 10.1186/s13287-022-03100-x

[71]

Bian Y, Dong Y, Sun J, et al. Protective effect of kaempferol on lps-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. J Agric Food Chem. 2020;68(1):160–167. doi: 10.1021/acs.jafc.9b06294

[72]

Bian Y., Dong Y., Sun J., et al. Protective effect of kaempferol on lps-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells // J Agric Food Chem. 2020. Vol. 68, N 1. P. 160–167. doi: 10.1021/acs.jafc.9b06294

[73]

Zhou C, Chen R, Gao F, et al. 4-Hydroxyisoleucine relieves inflammation through iRhom2-dependent pathway in co-cultured macrophages and adipocytes with LPS stimulation. BMC Complement Med Ther. 2020;20(1):373. doi: 10.1186/s12906-020-03166-1

[74]

Zhou C., Chen R., Gao F., et al. 4-Hydroxyisoleucine relieves inflammation through iRhom2-dependent pathway in co-cultured macrophages and adipocytes with LPS stimulation // BMC Complement Med Ther. 2020. Vol. 20, N 1. P. 373. doi: 10.1186/s12906-020-03166-1

[75]

Murata T, Hashimoto K, Kohno S, et al. Chemical inducer of regucalcin attenuates lipopolysaccharide-induced inflammatory responses in pancreatic MIN6 β-cells and RAW264.7 macrophages. FEBS Open Bio. 2022;12(1):175–191. doi: 10.1002/2211-5463.13321

[76]

Murata T., Hashimoto K., Kohno S., et al. Chemical inducer of regucalcin attenuates lipopolysaccharide-induced inflammatory responses in pancreatic MIN6 β-cells and RAW264.7 macrophages // FEBS Open Bio. 2022. Vol. 12, N 1. P. 175–191. doi: 10.1002/2211-5463.13321

[77]

Sattler K, El-Battrawy I, Cyganek L, et al. TRPV1 activation and internalization is part of the LPS-induced inflammation in human iPSC-derived cardiomyocytes. Sci Rep. 2021;11(1):14689. doi: 10.1038/s41598-021-93958-3

[78]

Sattler K., El-Battrawy I., Cyganek L., et al. TRPV1 activation and internalization is part of the LPS-induced inflammation in human iPSC-derived cardiomyocytes // Sci Rep. 2021. Vol. 11, N 1. P. 14689. doi: 10.1038/s41598-021-93958-3

[79]

Vanderheiden A, Klein RS. Neuroinflammation and COVID-19. Curr Opin Neurobiol. 2022;76:102608. doi: 10.1016/j.conb.2022.102608

[80]

Vanderheiden A., Klein R.S. Neuroinflammation and COVID-19 // Curr Opin Neurobiol. 2022. Vol. 76. P. 102608. doi: 10.1016/j.conb.2022.102608

[81]

Fedorov AA, Ermak NA, Gerashchenko TS, et al. Polarization of macrophages: mechanisms, markers and factors of induction. Siberian Journal of Oncology. 2022;21(4):124–136. doi: 10.21294/1814-4861-2022-21-4-124-136

[82]

Федоров А.А., Ермак Н.А., Геращенко Т.С., и соавт. Поляризация макрофагов: механизмы, маркеры и факторы индукции // Сибирский онкологический журнал. 2022. Т. 21, № 4. С. 124–136.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/