Current approaches to the genetic modification of mesenchymal stromal cells to increase their therapeutic efficacy
Larisa V. Limareva , Olga V. Gribkova , Pavel V. Iliasov , Yaroslav К. Grischuk
Genes & Cells ›› 2023, Vol. 18 ›› Issue (3) : 173 -188.
Current approaches to the genetic modification of mesenchymal stromal cells to increase their therapeutic efficacy
One of the extensively developing innovative approaches to the treatment of socially significant diseases is the use of cell technologies based on the transplantation and co-transplantation of mesenchymal stromal cells (MSCs) or on the use of their secretome components. The interest in these cell therapies is driven by the low immunogenicity of MSCs, relative simplicity of the cell isolation and handling, a wide range of therapeutic effects and proven efficacy of reparative and immunosuppressive action thereof.
By now, more than 2,000 clinical trials on the use of MSCs or their products in various pathological conditions have been completed, with more than 200 in the last five years. Both the immunosuppressive and the regenerative effects of MSCs are mediated to a great extent by their secretome which includes chemokines, growth factors, non-coding RNAs, and other active molecules. At the same time, the degree and character of MSCs’ effects depend not only on the microenvironment or body state, but also on the characteristics of MSCs themselves, including the genetic determinants governing levels of synthesis of bioactive molecules. In this review, options of genetic modification of MSCs in order to increase their therapeutic efficacy were considered.
mesenchymal stromal cells / MSC / cell therapy / gene modification / transfection / vectors
| [1] |
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016;96(3):1127–1168. doi: 10.1152/physrev.00019.2015 |
| [2] |
Golpanian S., Wolf A., Hatzistergos K.E., Hare J.M. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue // Physiol Rev. 2016. Vol. 96, N 3. P. 1127–1168. doi: 10.1152/physrev.00019.2015 |
| [3] |
Nakajima M, Nito C, Sowa K, et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke. Mol Ther Methods Clin Dev. 2017;6:102–111. doi: 10.1016/j.omtm.2017.06.005 |
| [4] |
Nakajima M., Nito C., Sowa K., et al. Mesenchymal stem cells overexpressing interleukin-10 promote neuroprotection in experimental acute ischemic stroke // Mol Ther Methods Clin Dev. 2017. Vol. 6. P. 102–111. doi: 10.1016/j.omtm.2017.06.005 |
| [5] |
Gu J, Huang L, Zhang C, et al. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial. Stem Cell Res Ther. 2020;11(1):43. doi: 10.1186/s13287-019-1545-x |
| [6] |
Gu J., Huang L., Zhang C., et al. Therapeutic evidence of umbilical cord-derived mesenchymal stem cell transplantation for cerebral palsy: a randomized, controlled trial // Stem Cell Res Ther. 2020. Vol. 11, N 1. P. 43. doi: 10.1186/s13287-019-1545-x |
| [7] |
Popandopulo АG, Turchyn VV, Solopov МV, Bushe VV. Problems of clinical trials of cell therapy effectiveness today. The Siberian Scientific Medical Journal. 2021;41(1):16–32. (In Russ). doi: 10.18699/SSMJ20210102 |
| [8] |
Попандопуло А.Г., Турчин В.В., Солопов М.В., Буше В.В. Проблемы клинических испытаний эффективности клеточной терапии сегодня // Сибирский научный медицинский журнал. 2021. T. 41, № 1. С. 16–32. doi: 10.18699/SSMJ20210102 |
| [9] |
Köhnke R, Ahlers MO, Birkelbach MA, et al. Temporomandibular joint osteoarthritis: regenerative treatment by a stem cell containing advanced therapy medicinal product (ATMP)-an in vivo animal trial. Int J Mol Sci. 2021;22(1):443. doi: 10.3390/ijms22010443 |
| [10] |
Köhnke R., Ahlers M.O., Birkelbach M.A., et al. Temporomandibular joint osteoarthritis: regenerative treatment by a stem cell containing advanced therapy medicinal product (ATMP)-an in vivo animal trial // Int J Mol Sci. 2021. Vol. 22, N 1. P. 443. doi: 10.3390/ijms22010443 |
| [11] |
Lynggaard CD, Grønhøj C, Christensen R, et al. Intraglandular off-the-shelf allogeneic mesenchymal stem cell treatment in patients with radiation-induced xerostomia: a safety study (MESRIX-II). Stem Cells Transl Med. 2022;11(5):478–489. doi: 10.1093/stcltm/szac011 |
| [12] |
Lynggaard C.D., Grønhøj C., Christensen R., et al. Intraglandular off-the-shelf allogeneic mesenchymal stem cell treatment in patients with radiation-induced xerostomia: a safety study (MESRIX-II) // Stem Cells Transl Med. 2022. Vol. 11, N 5. P. 478–489. doi: 10.1093/stcltm/szac011 |
| [13] |
Whelan DS, Caplice NM, Clover AJP. Mesenchymal stromal cell derived CCL2 is required for accelerated wound healing. Sci Rep. 2020;10(1):2642. doi: 10.1038/s41598-020-59174-1 |
| [14] |
Whelan D.S., Caplice N.M., Clover A.J.P. Mesenchymal stromal cell derived CCL2 is required for accelerated wound healing // Sci Rep. 2020. Vol. 10, N 1. P. 2642. doi: 10.1038/s41598-020-59174-1 |
| [15] |
Sun H, Pratt RE, Hodgkinson CP, Dzau VJ. Sequential paracrine mechanisms are necessary for the therapeutic benefits of stem cell therapy. Am J Physiol Cell Physiol. 2020;319(6):C1141–C1150. doi: 10.1152/ajpcell.00516.2019 |
| [16] |
Sun H., Pratt R.E., Hodgkinson C.P., Dzau V.J. Sequential paracrine mechanisms are necessary for the therapeutic benefits of stem cell therapy // Am J Physiol Cell Physiol. 2020. Vol. 319, N 6. P. C1141–C1150. doi: 10.1152/ajpcell.00516.2019 |
| [17] |
Han Y, Yang J, Fang J, et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022;7(1):92. doi: 10.1038/s41392-022-00932-0 |
| [18] |
Han Y., Yang J., Fang J., et al. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases // Signal Transduct Target Ther. 2022. Vol. 7, N 1. P. 92. doi: 10.1038/s41392-022-00932-0 |
| [19] |
Solovyeva VV, Blatt NL, Guseva DS, et al. Expression of pluripotency transcription factors in human third molar tooth germ derived multipotent mesenchymal stromal cells transfected by plasmid pBud-Sox2-Oct4. Genes & сells. 2015;10(2):65–70. (In Russ). |
| [20] |
Соловьева В.В., Блатт Н.Л., Гусева Д.С., и др. Исследование экспрессии факторов транскрипции плюрипотентности в мультипотентных мезенхимальных стромальных клетках из третьих моляров человека, трансфицированных плазмидой pBud-Sox2-Oct4 // Гены и клетки. 2015. Т. 10, № 2. С. 65–70. |
| [21] |
Horwitz EM, Le Blanc K, Dominici M, et al. International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–395. doi: 10.1080/14653240500319234 |
| [22] |
Horwitz E.M., Le Blanc K., Dominici M., et al. International Society for Cellular Therapy. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement // Cytotherapy. 2005. Vol. 7, N 5. P. 393–395. doi: 10.1080/14653240500319234 |
| [23] |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905 |
| [24] |
Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy. 2006. Vol. 8, N 4. P. 315–317. doi: 10.1080/14653240600855905 |
| [25] |
Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT) Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019–1024. doi: 10.1016/j.jcyt.2019.08.002 |
| [26] |
Viswanathan S., Shi Y., Galipeau J., et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT) Mesenchymal Stromal Cell committee position statement on nomenclature // Cytotherapy. 2019. Vol. 21. P. 1019–1024. doi: 10.1016/j.jcyt.2019.08.002 |
| [27] |
Su J, Chen X, Huang Y, et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 2014;21(3):388–396. doi: 10.1038/cdd.2013.149 |
| [28] |
Su J., Chen X., Huang Y., et al. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species // Cell Death Differ. 2014. Vol. 21, N 3. P. 388–396. doi: 10.1038/cdd.2013.149 |
| [29] |
Kallmeyer K, Pepper MS. Homing properties of mesenchymal stromal cells. Expert Opin Biological Ther. 2015;15:477–479. doi: 10.1517/14712598.2015.997204 |
| [30] |
Kallmeyer K., Pepper M.S. Homing properties of mesenchymal stromal cells // Expert Opin Biological Ther. 2015. Vol. 15. P. 477–479. doi: 10.1517/14712598.2015.997204 |
| [31] |
Lee SH. The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases. Osteoporos Sarcopenia. 2018;4(4):150. doi: 10.1016/j.afos.2018.11.083 |
| [32] |
Lee S.H. The advantages and limitations of mesenchymal stem cells in clinical application for treating human diseases // Osteoporos Sarcopenia. 2018. Vol. 4, N 4. P. 150. doi: 10.1016/j.afos.2018.11.083 |
| [33] |
Ratushnyy AY, Buravkova LB. Cell senescence and mesenchymal stromal cells. Fiziologiya cheloveka. 2020;46(1):100–110. (In Russ). doi: 10.31857/S0131164620010130 |
| [34] |
Ратушный А.Ю., Буравкова Л.Б. Клеточное старение и мезенхимальные стромальные клетки // Физиология человека. 2020. Т. 46, № 1. С. 100–110. doi: 10.31857/S0131164620010130 |
| [35] |
Ivolgin DA, Kudlay DA. Mesenchymal multipotent stromal cells and cancer safety: two sides of the same coin or a doubleedged sword (review of foreign literature). Russian Journal of Pediatric Hematology аnd Oncology. 2021;8(1):64–84. (In Russ). doi: 10.21682/2311-1267-2021-8-1-64-84 |
| [36] |
Иволгин Д.А., Кудлай Д.А. Мезенхимальные мультипотентные стромальные клетки и онкобезопасность: две стороны одной медали или обоюдоострый меч (обзор зарубежной литературы) // Российский журнал детской гематологии и онкологии. 2021. Т. 8, № 1. С. 64–84. doi: 10.21682/2311-1267-2021-8-1-64-84 |
| [37] |
Dolgopolov IS, Rykov MYu, Osadchij VV. Regenerative therapy for chronic heart failure: prospects for the use of cellular and acellular technologies. The Russian Archives of Internal Medicine. 2022;12(4): 293–301. (In Russ). doi: 10.20514/2226-6704-2022-12-4-293-301 |
| [38] |
Долгополов И.С., Рыков М.Ю., Осадчий В.А. Регенеративная терапия при хронической сердечной недостаточности: перспективы использования клеточных и бесклеточных технологий // Архивъ внутренней медицины. 2022. Т. 12, № 4. С. 293–301. doi: 10.20514/2226-6704-2022-12-4-293-301 |
| [39] |
Ding Y, Gong P, Jiang J, et al. Mesenchymal stem/stromal cells primed by inflammatory cytokines alleviate psoriasis-like inflammation via the TSG-6-neutrophil axis. Cell Death Dis. 2022;13(11):996. doi: 10.1038/s41419-022-05445-w |
| [40] |
Ding Y., Gong P., Jiang J., et al. Mesenchymal stem/stromal cells primed by inflammatory cytokines alleviate psoriasis-like inflammation via the TSG-6-neutrophil axis // Cell Death Dis. 2022. Vol. 13, N 11. P. 996. doi: 10.1038/s41419-022-05445-w |
| [41] |
Peng X, Liang B, Wang H, et al. Hypoxia pretreatment improves the therapeutic potential of bone marrow mesenchymal stem cells in hindlimb ischemia via upregulation of NRG-1. Cell Tissue Res. 2022;388(1):105–116. doi: 10.1007/s00441-021-03562-0 |
| [42] |
Peng X., Liang B., Wang H., et al. Hypoxia pretreatment improves the therapeutic potential of bone marrow mesenchymal stem cells in hindlimb ischemia via upregulation of NRG-1 // Cell Tissue Res. 2022. Vol. 388, N 1. P. 105–116. doi: 10.1007/s00441-021-03562-0 |
| [43] |
Levoux J, Prola A, Lafuste P, et al. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming. Cell Metab. 2021;33(2):283–299.e9. doi: 10.1016/j.cmet.2020.12.006 |
| [44] |
Levoux J., Prola A., Lafuste P., et al. Platelets facilitate the wound-healing capability of mesenchymal stem cells by mitochondrial transfer and metabolic reprogramming // Cell Metab. 2021. Vol. 33, N 2. P. 283–299.e9. doi: 10.1016/j.cmet.2020.12.006 |
| [45] |
Mendt M, Daher M, Basar R, et al. Metabolic reprogramming of GMP grade cord tissue derived mesenchymal stem cells enhances their suppressive potential in GVHD. Front Immunol. 2021;12:631353. doi: 10.3389/fimmu.2021.631353 |
| [46] |
Mendt M., Daher M., Basar R., et al. Metabolic reprogramming of GMP grade cord tissue derived mesenchymal stem cells enhances their suppressive potential in GVHD // Front Immunol. 2021. Vol. 12. P. 631353. doi: 10.3389/fimmu.2021.631353 |
| [47] |
Huang B, Jiang XC, Zhang TY, et al. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia. Int J Pharm. 2017;531(1):90–100. doi: 10.1016/j.ijpharm.2017.08.073 |
| [48] |
Huang B., Jiang X.C., Zhang T.Y., et al. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia // Int J Pharm. 2017. Vol. 531, N 1. P. 90–100. doi: 10.1016/j.ijpharm.2017.08.073 |
| [49] |
Cesarz Z, Tamama K. Spheroid culture of mesenchymal stem cells. Stem Cells Int. 2016;2016:9176357. doi: 10.1155/2016/9176357 |
| [50] |
Cesarz Z., Tamama K. Spheroid culture of mesenchymal stem cells // Stem Cells Int. 2016. Vol. 2016. P. 9176357. doi: 10.1155/2016/9176357 |
| [51] |
Egger D, Schwedhelm I, Hansmann J, Kasper C. Hypoxic three-dimensional scaffold-free aggregate cultivation of mesenchymal stem cells in a stirred tank reactor. Bioengineering (Basel). 2017;4(2):47. doi: 10.3390/bioengineering4020047 |
| [52] |
Egger D., Schwedhelm I., Hansmann J., Kasper C. Hypoxic three-dimensional scaffold-free aggregate cultivation of mesenchymal stem cells in a stirred tank reactor // Bioengineering (Basel). 2017. Vol. 4, N 2. P. 47. doi: 10.3390/bioengineering4020047 |
| [53] |
Shahror RA, Wu CC, Chiang YH, Chen KY. Genetically modified mesenchymal stem cells: the next generation of stem cell-based therapy for TBI. Int J Mol Sci. 2020;21(11):4051. doi: 10.3390/ijms21114051 |
| [54] |
Shahror R.A., Wu C.C., Chiang Y.H., Chen K.Y. Genetically modified mesenchymal stem cells: the next generation of stem cell-based therapy for TBI // Int J Mol Sci. 2020. Vol. 21, N 11. P. 4051. doi: 10.3390/ijms21114051 |
| [55] |
Jahnavi S, Garg V, Vasandan AB, et al. Lineage reprogramming of human adipose mesenchymal stem cells to immune modulatory i-Heps. Int J Biochem Cell Biol. 2022;149:106256. doi: 10.1016/j.biocel.2022.106256 |
| [56] |
Jahnavi S., Garg V., Vasandan A.B., et al. Lineage reprogramming of human adipose mesenchymal stem cells to immune modulatory i-Heps // Int J Biochem Cell Biol. 2022. Vol. 149. P. 106256. doi: 10.1016/j.biocel.2022.106256 |
| [57] |
Hossain MM, Murali MR, Kamarul T. Genetically modified mesenchymal stem/stromal cells transfected with adiponectin gene can stably secrete adiponectin. Life Sci. 2017;182:50–56. doi: 10.1016/j.lfs.2017.06.007 |
| [58] |
Hossain M.M., Murali M.R., Kamarul T. Genetically modified mesenchymal stem/stromal cells transfected with adiponectin gene can stably secrete adiponectin // Life Sci. 2017. Vol. 182. P. 50–56. doi: 10.1016/j.lfs.2017.06.007 |
| [59] |
Bezborodova OA, Nemtsova ER, Yakubovskaya RI, Kaprin AD. Gene therapy is a new area in medicine. P.A. Herzen Journal of Oncology. 2016;2:64–72. (In Russ). |
| [60] |
Безбородова О.А., Немцова Е.Р., Якубовская Р.И., Каприн А.Д. Генная терапия — новое направление в медицине // Онкология. Журнал им. П.А. Герцена. 2016. Т. 5, № 2. С. 64–72. doi: 10.17116/onkolog20165264-72 |
| [61] |
Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng. 2019;13:7. doi: 10.1186/s13036-019-0140-0 |
| [62] |
Hamann A., Nguyen A., Pannier A.K. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications // J Biol Eng. 2019. Vol. 13. P. 7. doi: 10.1186/s13036-019-0140-0 |
| [63] |
Sokolov AV, Limareva LV, Iliasov PV, et al. Methods of encapsulation of biomacromolecules and living cells. Prospects of using metal-organic frameworks. Russian Journal of Organic Chemistry. 2021;57(4):491–505. (In Russ). doi: 10.1134/S1070428021040011] |
| [64] |
Соколов А.В., Лимарева Л.В., Ильясов П.В., и др. Сравнительный анализ методов инкапсуляции биомакромолекул и живых клеток: перспективы использования металл-органических каркасных полимеров // Журнал органической химии. 2021. Т. 57, № 4. С. 457–473. doi: 10.1134/S1070428021040011 |
| [65] |
Chou KJ, Lee PT, Chen CL, et al. CD44 fucosylation on mesenchymal stem cell enhances homing and macrophage polarization in ischemic kidney injury. Exp Cell Res. 2017;350(1):91–102. doi: 10.1016/j.yexcr.2016.11.010 |
| [66] |
Chou K.J., Lee P.T., Chen C.L., et al. CD44 fucosylation on mesenchymal stem cell enhances homing and macrophage polarization in ischemic kidney injury // Exp Cell Res. 2017. Vol. 350, N 1. P. 91–102. doi: 10.1016/j.yexcr.2016.11.010 |
| [67] |
Nan Z, Fan H, Tang Q, et al. Dual expression of CXCR4 and IL-35 enhances the therapeutic effects of BMSCs on TNBS-induced colitis in rats through expansion of Tregs and suppression of Th17 cells. Biochem Biophys Res Commun. 2018;499(4):727–734. doi: 10.1016/j.bbrc.2018.03.043 |
| [68] |
Nan Z., Fan H., Tang Q., et al. Dual expression of CXCR4 and IL-35 enhances the therapeutic effects of BMSCs on TNBS-induced colitis in rats through expansion of Tregs and suppression of Th17 cells // Biochem Biophys Res Commun. 2018. Vol. 499, N 4. P. 727–734. doi: 10.1016/j.bbrc.2018.03.043 |
| [69] |
Shahror RA, Ali AAA, Wu CC, et al. Enhanced homing of mesenchymal stem cells overexpressing fibroblast growth factor 21 to injury site in a mouse model of traumatic brain injury. Int J Mol Sci. 2019;20(11):2624. doi: 10.3390/ijms20112624 |
| [70] |
Shahror R.A., Ali A.A.A., Wu C.C., et al. Enhanced homing of mesenchymal stem cells overexpressing fibroblast growth factor 21 to injury site in a mouse model of traumatic brain injury // Int J Mol Sci. 2019. Vol. 20, N 11. P. 2624. doi: 10.3390/ijms20112624 |
| [71] |
McGinley LM, McMahon J, Stocca A, al. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression. Hum Gene Ther. 2013;24(10):840–851. doi: 10.1089/hum.2011.009 |
| [72] |
McGinley L.M., McMahon J., Stocca A., et al. Mesenchymal stem cell survival in the infarcted heart is enhanced by lentivirus vector-mediated heat shock protein 27 expression // Hum Gene Ther. 2013. Vol. 24, N 10. P. 840–851. doi: 10.1089/hum.2011.009 |
| [73] |
Xiang Q, Hong D, Liao Y, et al. Overexpression of Gremlin1 in mesenchymal stem cells improves hindlimb ischemia in mice by enhancing cell survival. J Cell Physiol. 2017;232(5):996–1007. doi: 10.1002/jcp.25578 |
| [74] |
Xiang Q., Hong D., Liao Y., et al. Overexpression of Gremlin1 in mesenchymal stem cells improves hindlimb ischemia in mice by enhancing cell survival // J Cell Physiol. 2017. Vol. 232, N 5. P. 996–1007. doi: 10.1002/jcp.25578 |
| [75] |
Yan X, Cheng X, He X, et al. HO-1 overexpressed mesenchymal stem cells ameliorate sepsis-associated acute kidney injury by activating JAK/stat3 pathway. Cel Mol Bioeng. 2018;11(6):509–518. doi: 10.1007/s12195-018-0540-0 |
| [76] |
Yan X., Cheng X., He X., et al. HO-1 overexpressed mesenchymal stem cells ameliorate sepsis-associated acute kidney injury by activating JAK/STAT3 pathway // Cel Mol Bioeng. 2018. Vol. 11, N 6. P. 509–518. doi: 10.1007/s12195-018-0540-0 |
| [77] |
Peruzzaro ST, Andrews MMM, Al-Gharaibeh A, et al. Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury. J Neuroinflammation. 2022;19(1):15. doi: 10.1186/s12974-018-1383-2. Corrected and republished from: J Neuroinflammation. 2019;16(1):2. doi: 10.1186/s12974-018-1383-2. |
| [78] |
Peruzzaro S.T., Andrews M.M.M., Al-Gharaibeh A., et al. Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury // Neuroinflammation. 2022. Vol. 19, N 1. P. 15. Corrected and republished from: J Neuroinflammation. 2019. Vol. 16, N 1. P. 2. doi: 10.1186/s12974-018-1383-2 |
| [79] |
Dai P, Qi G, Xu H, et al. Reprogramming adipose mesenchymal stem cells into islet β-cells for the treatment of canine diabetes mellitus. Stem Cell Res Ther. 2022;13(1):370. doi: 10.1186/s13287-022-03020-w |
| [80] |
Dai P., Qi G., Xu H., et al. Reprogramming adipose mesenchymal stem cells into islet β-cells for the treatment of canine diabetes mellitus // Stem Cell Res Ther. 2022. Vol. 13, N 1. P. 370. doi: 10.1186/s13287-022-03020-w |
| [81] |
Salvadori M, Cesari N, Murgia A, et al. Dissecting the pharmacodynamics and pharmacokinetics of MSCs to overcome limitations in their clinical translation. Mol Ther Methods Clin Dev. 2019;14:1–15. doi: 10.1016/j.omtm.2019.05.004 |
| [82] |
Salvadori M., Cesari N., Murgia A., et al. Dissecting the pharmacodynamics and pharmacokinetics of MSCs to overcome limitations in their clinical translation // Mol Ther Methods Clin Dev. 2019. Vol. 14. P. 1–15. doi: 10.1016/j.omtm.2019.05.004 |
| [83] |
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, et al. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: a systematic review. J Clin Med. 2021;10(13):2925. doi: 10.3390/jcm10132925 |
| [84] |
Sanchez-Diaz M., Quiñones-Vico M.I., Sanabria de la Torre R., et al. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: a systematic review // J Clin Med. 2021. Vol. 10, N 13. P. 2925. doi: 10.3390/jcm10132925 |
| [85] |
Bryukhovetskyi IS, Bryukhovetskyi AS, Mischenko PV, Khotimchenko YS. The role of systemic migration and homing mechanisms of stem cells in the development of malignant tumors of the central nervous system and the development of new cancer therapies. Russian Journal of Biotherapy. 2013;12(4):3–12. (In Russ). |
| [86] |
Брюховецкий И.С., Брюховецкий А.С., Мищенко П.В., Хотимченко Ю.С. Роль системных механизмов миграции и хоуминга стволовых клеток в развитии злокачественных опухолей центральной нервной системы и разработке новых методов противоопухолевой терапии // Российский биотерапевтический журнал. 2013. Т. 12. № 4. С. 3–12. |
| [87] |
Wang K, Li Y, Zhu T, et al. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure. Stem Cell Res Ther. 2017;8(1):162. doi: 10.1186/s13287-017-0614-2 |
| [88] |
Wang K., Li Y., Zhu T., et al. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure // Stem Cell Res Ther. 2017. Vol. 8, N 1. P. 162. doi: 10.1186/s13287-017-0614-2 |
| [89] |
Lu Y, Wang Z, Chen L, et al. The in vitro differentiation of GDNF gene-engineered amniotic fluid-derived stem cells into renal tubular epithelial-like cells. Stem Cells Dev. 2018;27(9):590–599. doi: 10.1089/scd.2017.0120 |
| [90] |
Lu Y., Wang Z., Chen L., et al. The in vitro differentiation of GDNF gene-engineered amniotic fluid-derived stem cells into renal tubular epithelial-like cells // Stem Cells Dev. 2018. Vol. 27, N 9. P. 590–599. doi: 10.1089/scd.2017.0120 |
| [91] |
Li S, Wang Y, Wang Z, et al. Enhanced renoprotective effect of GDNF-modified adipose-derived mesenchymal stem cells on renal interstitial fibrosis. Stem Cell Res Ther. 2021;12(1):27. doi: 10.1186/s13287-020-02049-z |
| [92] |
Li S., Wang Y., Wang Z., et al. Enhanced renoprotective effect of GDNF-modified adipose-derived mesenchymal stem cells on renal interstitial fibrosis // Stem Cell Res Ther. 2021. Vol. 12, N 1. P. 27. doi: 10.1186/s13287-020-02049-z |
| [93] |
Song L, Zhang F, Zhou R, et al. hCTLA4-gene-modified human bone marrow-derived mesenchymal stem cells (hBMMSCs) maintain POSTN secretion to enhance the migration capability of allogeneic hBMMSCs through the integrin αvβ3/FAK/ERK signaling pathway. Stem Cells Int. 2020. 2020:3608284. doi: 10.1155/2020/3608284 |
| [94] |
Song L., Zhang F., Zhou R., et al. hCTLA4-gene-modified human bone marrow-derived mesenchymal stem cells (hBMMSCs) maintain POSTN secretion to enhance the migration capability of allogeneic hBMMSCs through the integrin αvβ3/FAK/ERK signaling pathway // Stem Cells Int. 2020. Vol. 2020. P. 3608284. doi: 10.1155/2020/3608284 |
| [95] |
Li X, He L, Yue Q, et al. MiR-9-5p promotes MSC migration by activating β-catenin signaling pathway. Am J Physiol Cell Physiol. 2017;313(1):C80–C93. doi: 10.1152/ajpcell.00232.2016 |
| [96] |
Li X., He L., Yue Q., et al. MiR-9-5p promotes MSC migration by activating β-catenin signaling pathway // Am J Physiol Cell Physiol. 2017. Vol. 313, N 1. P. C80–C93. doi: 10.1152/ajpcell.00232.2016 |
| [97] |
Mayorga ME, Kiedrowski M, McCallinhart P, et al. Role of SDF-1:CXCR4 in impaired post-myocardial infarction cardiac repair in diabetes. Stem Cells Transl Med. 2018;7(1):115–124. doi: 10.1002/sctm.17-0172 |
| [98] |
Mayorga M.E., Kiedrowski M., McCallinhart P., et al. Role of SDF-1:CXCR4 in impaired post-myocardial infarction cardiac repair in diabetes // Stem Cells Transl Med. 2018. Vol. 7, N 1. P. 115–124. doi: 10.1002/sctm.17-0172 |
| [99] |
Tang J, Wang J, Guo L, et al. Mesenchymal stem cells modified with stromal cell-derived factor 1α improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Mol Cells. 2010;29(1):9–19. doi: 10.1007/s10059-010-0001-7 |
| [100] |
Tang J., Wang J., Guo L., et al. Mesenchymal stem cells modified with stromal cell-derived factor 1α improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction // Mol Cells. 2010. Vol. 29, N 1. P. 9–19. doi: 10.1007/s10059-010-0001-7 |
| [101] |
Zhang M, Mal N, Kiedrowski M, et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 2007;21(12):3197–207. doi: 10.1096/fj.06-6558com |
| [102] |
Zhang M., Mal N., Kiedrowski M., et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction // FASEB J. 2007. Vol. 21, N 12. P. 3197–3207. doi: 10.1096/fj.06-6558com |
| [103] |
Wang Y, Li Y, Song L, et al. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits. Mol Med Rep. 2016;14(1):234–242. doi: 10.3892/mmr.2016.5212 |
| [104] |
Wang Y., Li Y., Song L., et al. The transplantation of Akt-overexpressing amniotic fluid-derived mesenchymal stem cells protects the heart against ischemia-reperfusion injury in rabbits // Mol Med Rep. 2016. Vol. 14, N 1. P. 234–242. doi: 10.3892/mmr.2016.5212 |
| [105] |
Zhang F, Peng W, Zhang J, et al. PARK7 enhances antioxidative-stress processes of BMSCs via the ERK1/2 pathway. J Cell Biochem. 2021;122(2):222–234. doi: 10.1002/jcb.29845 |
| [106] |
Zhang F., Peng W., Zhang J., et al. PARK7 enhances antioxidative-stress processes of BMSCs via the ERK1/2 pathway // J Cell Biochem. 2021. Vol. 122, N 2. P. 222–234. doi: 10.1002/jcb.29845 |
| [107] |
Okada M, Kim HW, Matsuura K, et al. Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells. 2016;34(1):148. doi: 10.1002/stem.2211 |
| [108] |
Okada M., Kim H.W., Matsuura K., et al. Abrogation of age-induced microRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase // Stem Cells. 2016. Vol. 34, N 1. P. 148–159. doi: 10.1002/stem.2211 |
| [109] |
Soppert J, Kraemer S, Beckers C, et al. Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. J Am Heart Assoc. 2018;7(17):e009384. doi: 10.1161/JAHA.118.009384 |
| [110] |
Soppert J., Kraemer S., Beckers C., et al. Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis // J Am Heart Assoc. 2018. Vol. 7, N 17. P. e009384. doi: 10.1161/JAHA.118.009384 |
| [111] |
Zhang Y, Zhu W, He H, et al. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging (Albany NY). 2019;11(24):12641–12660. doi: 10.18632/aging.102592 |
| [112] |
Zhang Y., Zhu W., He H., et al. Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair // Aging (Albany NY). 2019. Vol. 11, N 24. P. 12641–12660. doi: 10.18632/aging.102592 |
| [113] |
Bi S, Liu Z, Wu Z, et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell. 2020;11(7):483–504. doi: 10.1007/s13238-020-00728-4 |
| [114] |
Bi S., Liu Z., Wu Z., et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer // Protein Cell. 2020. Vol. 11, N 7. P. 483–504. doi: 10.1007/s13238-020-00728-4 |
| [115] |
Vazquez BN, Thackray JK, Simonet NG, et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J. 2016;35(14):1488–1503. doi: 10.15252/embj.201593499 |
| [116] |
Vazquez B.N., Thackray J.K., Simonet N.G., et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair // EMBO J. 2016. Vol. 35, N 14. P. 1488–1503. doi: 10.15252/embj.201593499 |
| [117] |
Paredes S, Angulo-Ibanez M, Tasselli L, et al. The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J Biol Chem. 2018;293(28):11242–11250. doi: 10.1074/jbc.AC118.003325 |
| [118] |
Paredes S., Angulo-Ibanez M., Tasselli L., et al. The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability // J Biol Chem. 2018. Vol. 293, N 28. P. 11242–11250. doi: 10.1074/jbc.AC118.003325 |
| [119] |
Yan Y, Zhao N, He X, et al. Mesenchymal stem cell expression of interleukin-35 protects against ulcerative colitis by suppressing mucosal immune responses. Cytotherapy. 2018;20(7):911–918. doi: 10.1016/j.jcyt.2018.05.004 |
| [120] |
Yan Y., Zhao N., He X., et al. Mesenchymal stem cell expression of interleukin-35 protects against ulcerative colitis by suppressing mucosal immune responses // Cytotherapy. 2018. Vol. 20, N 7. P. 911–918. doi: 10.1016/j.jcyt.2018.05.004 |
| [121] |
Li R, Wang R, Zhong S, et al. TGF-β1-overexpressing mesenchymal stem cells reciprocally regulate Th17/Treg cells by regulating the expression of IFN-γ. Open Life Sci. 2021;16(1):1193–1202. doi: 10.1515/biol-2021-0118 |
| [122] |
Li R., Wang R., Zhong S., et al. TGF-β1-overexpressing mesenchymal stem cells reciprocally regulate Th17/Treg cells by regulating the expression of IFN-γ // Open Life Sci. 2021. Vol. 16, N 1. P. 1193–1202. doi: 10.1515/biol-2021-0118 |
| [123] |
Sirpilla O, Sakemura RL, Hefazi M, et al. Bioengineering mesenchymal stromal cells with chimeric antigen receptors induces superior immunosuppressive efficacy in preclinical graft versus host disease models. Transplantation and Cellular Therapy Meetings; 2023 Feb 15–19; Orlando, USA. P. S57–S58. |
| [124] |
Sirpilla O., Sakemura R.L., Hefazi M., et al. Bioengineering mesenchymal stromal cells with chimeric antigen receptors induces superior immunosuppressive efficacy in preclinical graft versus host disease models. Transplantation and Cellular Therapy Meetings; 2023 Feb 15–19; Orlando, USA. P. S57–S58. |
| [125] |
Chen HX, Xiang H, Xu WH, et al. Manganese superoxide dismutase gene-modified mesenchymal stem cells attenuate acute radiation-induced lung injury. Hum Gene Ther. 2017;28(6):523–532. doi: 10.1089/hum.2016.106 |
| [126] |
Chen H.X., Xiang H., Xu W.H., et al. Manganese superoxide dismutase gene-modified mesenchymal stem cells attenuate acute radiation-induced lung injury // Hum Gene Ther. 2017. Vol. 28, N 6. P. 523–532. doi: 10.1089/hum.2016.106 |
| [127] |
Min Y, Han S, Aae Ryu H, Kim SW. Human adipose mesenchymal stem cells overexpressing dual chemotactic gene showed enhanced angiogenic capacity in ischaemic hindlimb model. Cardiovasc Res. 2018;114(10):1400–1409. doi: 10.1093/cvr/cvy086 |
| [128] |
Min Y., Han S., Aae Ryu H., Kim S.W. Human adipose mesenchymal stem cells overexpressing dual chemotactic gene showed enhanced angiogenic capacity in ischaemic hindlimb model // Cardiovasc Res. 2018. Vol. 114, N 10. P. 1400–1409. doi: 10.1093/cvr/cvy086 |
| [129] |
Dergilev KV, Shevchenko EK, Tsokolaeva ZI, et al. Cell sheet comprised of mesenchymal stromal cells overexpressing stem cell factor promotes epicardium activation and heart function improvement in a rat model of myocardium infarction. Int J Mol Sci. 2020;21(24):9603. doi: 10.3390/ijms21249603 |
| [130] |
Dergilev K.V., Shevchenko E.K., Tsokolaeva Z.I., et al. Cell sheet comprised of mesenchymal stromal cells overexpressing stem cell factor promotes epicardium activation and heart function improvement in a rat model of myocardium infarction // Int J Mol Sci. 2020. Vol. 21, N 24. P. 9603. doi: 10.3390/ijms21249603 |
| [131] |
Kato T, Khanh VC, Sato K, et al. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2017;493(2):1010–1017. doi: 10.1016/j.bbrc.2017.09.100 |
| [132] |
Kato T., Khanh V.C., Sato K., et al. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells // Biochem Biophys Res Commun. 2017. Vol. 493, N 2. P. 1010–1017. doi: 10.1016/j.bbrc.2017.09.100 |
| [133] |
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 2009;5(1):54–63. doi: 10.1016/j.stem.2009.05.003 |
| [134] |
Lee R.H., Pulin A.A., Seo M.J., et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6 // Cell Stem Cell. 2009. Vol. 5, N 1. P. 54–63. doi: 10.1016/j.stem.2009.05.003 |
| [135] |
Silva DN, Souza BSF, Vasconcelos JF, et al. Granulocyte-colony stimulating factor-overexpressing mesenchymal stem cells exhibit enhanced immunomodulatory actions through the recruitment of suppressor cells in experimental chagas disease cardiomyopathy. Front Immunol. 2018;9:1449. doi: 10.3389/fimmu.2018.01449 |
| [136] |
Silva D.N., Souza B.S.F., Vasconcelos J.F., et al. Granulocyte-colony stimulating factor-overexpressing mesenchymal stem cells exhibit enhanced immunomodulatory actions through the recruitment of suppressor cells in experimental chagas disease cardiomyopathy // Front Immunol. 2018. Vol. 9. P. 1449. doi: 10.3389/fimmu.2018.01449 |
| [137] |
Kong D, Hu Y, Li X, et al. IL-37 Gene modification enhances the protective effects of mesenchymal stromal cells on intestinal ischemia reperfusion injury. Stem Cells Int. 2020;2020:8883636. doi: 10.1155/2020/8883636 |
| [138] |
Kong D., Hu Y., Li X., et al. IL-37 Gene modification enhances the protective effects of mesenchymal stromal cells on intestinal ischemia reperfusion injury // Stem Cells Int. 2020. Vol. 2020. P. 8883636. doi: 10.1155/2020/8883636 |
| [139] |
Beloglazova IB, Molokotina JuD, Zubkova ES, i dr. Vybor virusnogo vektora dlja poluchenija geneticheski modificirovannyh mezenhimnyh stromal’nyh kletok zhirovoj tkani, producirujushhih faktor rosta gepatocitov, dlja stimuljacii vosstanovlenija krovosnabzhenija i innervacii ishemizirovannyh tkanej. Genes & cells. 2017;12(3):168–169. (In Russ). |
| [140] |
Белоглазова И.Б., Молокотина Ю.Д., Зубкова Е.С., и др. Выбор вирусного вектора для получения генетически модифицированных мезенхимных стромальных клеток жировой ткани, продуцирующих фактор роста гепатоцитов, для стимуляции восстановления кровоснабжения и иннервации ишемизированных тканей // Гены и клетки. 2017. Т. 12, № 3. С. 168–169. |
| [141] |
Boldyreva MA, Shevchenko EK, Molokotina YD, et al. Transplantation of adipose stromal cell sheet producing hepatocyte growth factor induces pleiotropic effect in ischemic skeletal muscle. Int J Mol Sci. 2019;20(12):3088. doi: 10.3390/ijms20123088 |
| [142] |
Boldyreva M.A., Shevchenko E.K., Molokotina Y.D., et al. Transplantation of adipose stromal cell sheet producing hepatocyte growth factor induces pleiotropic effect in ischemic skeletal muscle // Int J Mol Sci. 2019. Vol. 20, N 12. P. 3088. doi: 10.3390/ijms20123088 |
| [143] |
Sage EK, Kolluri KK, McNulty K, et al. Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma. Thorax. 2014;69(7):638–647. doi: 10.1136/thoraxjnl-2013-204110 |
| [144] |
Sage E.K., Kolluri K.K., McNulty K., et al. Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma // Thorax. 2014. Vol. 69, N 7. P. 638–647. doi: 10.1136/thoraxjnl-2013-204110 |
| [145] |
Tyciakova S, Matuskova M, Bohovic R, et al. Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft. J Gene Med. 2015;17(1-2):54–67. doi: 10.1002/jgm.2823 |
| [146] |
Tyciakova S., Matuskova M., Bohovic R., et al. Genetically engineered mesenchymal stromal cells producing TNFα have tumour suppressing effect on human melanoma xenograft // J Gene Med. 2015. Vol. 17, N 1-2. P. 54–67. doi: 10.1002/jgm.2823 |
| [147] |
Hagenhoff A, Bruns CJ, Zhao Y, et al. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther. 2016;16(9):1079–1092. doi: 10.1080/14712598.2016.1196179 |
| [148] |
Hagenhoff A., Bruns C.J., Zhao Y., et al. Harnessing mesenchymal stem cell homing as an anticancer therapy // Expert Opin Biol Ther. 2016. Vol. 16, N 9. P. 1079–1092. doi: 10.1080/14712598.2016.1196179 |
| [149] |
Grisendi G, Spano C, D’souza N, et al. Mesenchymal progenitors expressing TRAIL induce apoptosis in sarcomas. Stem Cells. 2015;33(3):859–869. doi: 10.1002/stem.1903 |
| [150] |
Grisendi G., Spano C., D’souza N., et al. Mesenchymal progenitors expressing TRAIL induce apoptosis in sarcomas // Stem Cells. 2015. Vol. 33, N 3. P. 859–869. doi: 10.1002/stem.1903 |
| [151] |
Lee P, Iyer D, Magal A, et al. Manufacturing development of SENTI-101, a gene circuit modified allogeneic bone marrow derived mesenchymal stromal cell (BM-MSC) therapy for the treatment of solid tumors. Cytotherapy. 2020;22(5 Suppl.):S11–S12. doi: 10.1016/j.jcyt.2020.03.474 |
| [152] |
Lee P., Iyer D., Magal A., et al. Manufacturing development of SENTI-101, a gene circuit modified allogeneic bone marrow derived mesenchymal stromal cell (BM-MSC) therapy for the treatment of solid tumors // Cytotherapy. 2020. Vol. 22, N 5 Suppl. P. S11–S12. doi: 10.1016/j.jcyt.2020.03.474 |
| [153] |
Huang S, Li Y, Wu P, et al. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head. J Cell Mol Med. 2020;24(19):11512–11523. doi: 10.1111/jcmm.15766 |
| [154] |
Huang S., Li Y., Wu P., et al. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head // J Cell Mol Med. 2020. Vol. 24, N 19. P. 11512–11523. doi: 10.1111/jcmm.15766 |
| [155] |
Vieira JMF, Zamproni LN, Wendt CHC, et al. Overexpression of mir-135b and mir-210 in mesenchymal stromal cells for the enrichment of extracellular vesicles with angiogenic factors. PLoS One. 2022;17(8):e0272962. doi: 10.1371/journal.pone.0272962 |
| [156] |
Vieira J.M.F., Zamproni L.N., Wendt C.H.C., et al. Overexpression of mir-135b and mir-210 in mesenchymal stromal cells for the enrichment of extracellular vesicles with angiogenic factors // PLoS One. 2022. Vol. 17, N 8. P. e0272962. doi: 10.1371/journal.pone.0272962 |
| [157] |
Basalova NA, Karagjaur MN, Vigovskij MA, i dr. Materialy VIII molodezhnoj shkoly-konferencii po molekuljarnoj biologii i geneticheskim tehnologijam instituta citologii RAN (11–14 oktjabrja 2022 g., Institut citologii RAN, Sankt-Peterburg). Tsitologiya. 2022;64(7):611–780. (In Russ). doi: 10.31857/S004137712207001X |
| [158] |
Басалова Н.А., Карагяур М.Н., Виговский М.А., и др. Материалы VIII молодежной школы-конференции по молекулярной биологии и генетическим технологиям института цитологии РАН (11–14 октября 2022 г., Институт цитологии РАН, Санкт-Петербург) // Цитология. 2022. Т. 64, № 7. С. 611–780. doi: 10.31857/S004137712207001X |
| [159] |
Lee S, Moon S, Oh JY, et al. Enhanced insulin production and reprogramming efficiency of mesenchymal stem cells derived from porcine pancreas using suitable induction medium. Xenotransplantation. 2018;26(1):e12451. doi: 10.1111/xen.12451 |
| [160] |
Lee S., Moon S., Oh J.Y., et al. Enhanced insulin production and reprogramming efficiency of mesenchymal stem cells derived from porcine pancreas using suitable induction medium // Xenotransplantation. 2018. Vol. 26, N 1. P. e12451. doi: 10.1111/xen.12451 |
| [161] |
Frisch J, Venkatesan JK, Rey-Rico A, et al. Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther. 2014;5(4):103. doi: 10.1186/scrt491 |
| [162] |
Frisch J., Venkatesan J.K., Rey-Rico A., et al. Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells // Stem Cell Res Ther. 2014. Vol. 5, N 4. P. 103. doi: 10.1186/scrt491 |
| [163] |
Yalvac ME, Ramazanoglu M, Rizvanov AA, et al. Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics J. 2010;10(2):105–113. doi: 10.1038/tpj.2009.40 |
| [164] |
Yalvac M.E., Ramazanoglu M., Rizvanov A.A., et al. Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis // Pharmacogenomics J. 2010. Vol. 10, N 2. P. 105–113. doi: 10.1038/tpj.2009.40 |
| [165] |
Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang CY, et al. Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation. 2011;123(8):866–876. doi: 10.1161/CIRCULATIONAHA.110.947531 |
| [166] |
Li Y., Hiroi Y., Ngoy S., et al. Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction // Circulation. 2011. Vol. 123, N 8. P. 866–876. doi: 10.1161/CIRCULATIONAHA.110.947531 |
| [167] |
Steinberg GK, Kondziolka D, Wechsler LR, et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): a phase 1/2a study. J Neurosurg. 2018;5:1–11. doi: 10.3171/2018.5.JNS173147 |
| [168] |
Steinberg G.K., Kondziolka D., Wechsler L.R., et al. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): a phase 1/2a study // J Neurosurg. 2018. P. 1–11. doi: 10.3171/2018.5.JNS173147 |
| [169] |
Yabuno S, Yasuhara T, Nagase T, et al. Synergistic therapeutic effects of intracerebral transplantation of human modified bone marrow-derived stromal cells (SB623) and voluntary exercise with running wheel in a rat model of ischemic stroke. Stem Cell Res Ther. 2023;14(1):10. doi: 10.1186/s13287-023-03236-4 |
| [170] |
Yabuno S., Yasuhara T., Nagase T., et al. Synergistic therapeutic effects of intracerebral transplantation of human modified bone marrow-derived stromal cells (SB623) and voluntary exercise with running wheel in a rat model of ischemic stroke // Stem Cell Res Ther. 2023. Vol. 14, N 1. P. 10. doi: 10.1186/s13287-023-03236-4 |
| [171] |
Bogdanova MA, Kostareva AA, Malashicheva AB. Notch pathway in differentiation of human mesenchymal stem cells. Biological Communications. 2014;(2):94–104. (In Russ). Available from: https://biocomm.spbu.ru/article/view/1139 |
| [172] |
Богданова М.А., Костарева А.А., Малашичева А.Б. Роль сигнального пути Notch в дифференцировке мезенхимных стволовых клеток жировой ткани человека // Biological Communications. 2014. № 2. С. 94–104. Режим доступа: https://biocomm.spbu.ru/article/view/1139 Дата обращения: 14.04.2023. |
| [173] |
Dergilev KV, Zubkova ES, Beloglazova IB. Notch signal pathway — therapeutic target for regulation of reparative processes in the heart. Terapevticheskii arkhiv. 2018;90(12):112–121. (In Russ). doi: 10.26442/00403660.2018.12.000014 |
| [174] |
Дергилев К.В., Зубкова Е.С., Белоглазова И.Б., и др. Сигнальный путь Notch — терапевтическая мишень для регуляции репаративных процессов в сердце // Терапевтический архив. 2018. Т. 90, № 12. С. 112–121. doi: 10.26442/00403660.2018.12.000014 |
Eco-Vector
/
| 〈 |
|
〉 |