Pulmonary fibrosis: risk factors, pathogenesis and in vivo/in vitro experimental modeling

Irena V. Chistyakova , Anna B. Malashicheva

Genes & Cells ›› 2023, Vol. 18 ›› Issue (2) : 109 -121.

PDF
Genes & Cells ›› 2023, Vol. 18 ›› Issue (2) : 109 -121. DOI: 10.23868/gc321765
Reviews
review-article

Pulmonary fibrosis: risk factors, pathogenesis and in vivo/in vitro experimental modeling

Author information +
History +
PDF

Abstract

Pulmonary fibrosis (PF) is a group of lung diseases characterized by scar formation and interstitial pneumonia with a mean life expectancy of 3–5 years’post diagnosis. Risk factors for developing PF include external (environment) and internal (genetic risk factors). The central role in the formation of fibrosis is played by the massive myofibroblasts and the excessive deposition of extracellular matrix, including collagen I type.

The main approaches for PF treatment is either lung transplantation or therapeutic treatment by antifibrotic drugs. However, for both approaches there are a number of limitations: for surgical — the lack of donor organs and immune rejection of transplanted tissues, for therapeutic — the drugs that are identified in animal studies fail in human clinical trials. Thus, there is a necessity for advancing of humanized in vitro models to improve treatments prior to human clinical trials.

The development of different tissue (two-, three-dimensional) models has created systems capable of emulating human lung structure, function, and cell and matrix interactions, which have shown potential for in vitro drug testing. In this review, we focused on PF risk factors, development mechanisms, and a review of the main in vitro and in vivo models for studying PF.

Keywords

pulmonary fibrosis / risk factors / cellular models in vivo, in vitro

Cite this article

Download citation ▾
Irena V. Chistyakova, Anna B. Malashicheva. Pulmonary fibrosis: risk factors, pathogenesis and in vivo/in vitro experimental modeling. Genes & Cells, 2023, 18(2): 109-121 DOI:10.23868/gc321765

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hardie WD, Hagood JS, Dave V, et al. Signaling pathways in the epithelial origins of pulmonary fibrosis. Cell Cycle. 2010;9(14):2841–2848. doi: 10.4161/cc.9.14.12268

[2]

Hardie W.D., Hagood J.S., Dave V., et al. Signaling pathways in the epithelial origins of pulmonary fibrosis // Cell Cycle. 2010. Vol. 9, N 14. P. 2841–2848. doi: 10.4161/cc.9.14.12268

[3]

Avdeev SN. Idiopatic pulmonary fibrosis. Pulmonology. 2015;25(5):600–612. (In Russ). doi: 10.18093/0869-0189-2015-25-5-600-612

[4]

Авдеев С.Н. Идиопатический легочный фиброз // Пульмонология. 2015. Т. 25, № 5. С. 600–612. doi: 10.18093/0869-0189-2015-25-5-600-612

[5]

Huang SXL, Islam MN, O’Neill J, et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat biotech. 2014;32(1):84–91. doi: 10.1038/nbt.2754

[6]

Huang S.X.L., Islam M.N., O’Neill J., et al. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells // Nat Biotechnol. 2014. Vol. 32, N 1. P. 84–91. doi: 10.1038/nbt.2754

[7]

Taskar VS, Coultas DB. Is idiopathic pulmonary fibrosis an environmental disease? Proc A Thorac Soc. 2006;3(4):293–298. doi: 10.1513/pats.200512-131TK

[8]

Taskar V.S., Coultas D.B. Is idiopathic pulmonary fibrosis an environmental disease? // Proc A Thorac Soc. 2006. Vol. 3, N 4. P. 293–298. doi: 10.1513/pats.200512-131TK

[9]

Soleimani F, Dobaradaran S, De-la-Torre GE, et al. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: a comprehensive systematic review. Sci Total Environ. 2022;813:152667. doi: 10.1016/j.scitotenv.2021.152667

[10]

Soleimani F., Dobaradaran S., De-la-Torre G.E., et al. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: a comprehensive systematic review // Sci Total Environ. 2022. Vol. 813. P. 152667. doi: 10.1016/j.scitotenv.2021.152667

[11]

Hikichi M, Mizumura K, Maruoka S, Gon Y. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J Thorac Dis. 2019;11(Suppl. 17):S2129–S2140. doi: 10.21037/jtd.2019.10.43

[12]

Hikichi M., Mizumura K., Maruoka S., Gon Y. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke // J Thorac Dis. 2019. Vol. 11, Suppl 17. P. S2129–S2140. doi: 10.21037/jtd.2019.10.43

[13]

Stevenson CS, Belvisi MG. Preclinical animal models of asthma and chronic obstructive pulmonary disease. Expert Rev Respir Med. 2008;2(5):631–643. doi: 10.1586/17476348.2.5.631

[14]

Stevenson C.S., Belvisi M.G. Preclinical animal models of asthma and chronic obstructive pulmonary disease // Expert Rev Respir Med. 2008. Vol. 2, N 5. P. 631–643. doi: 10.1586/17476348.2.5.631

[15]

Yang IV, Fingerlin TE, Evans CM, et al. MUC5B and idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2015;12(Suppl. 2):S193–S199. doi: 10.1513/AnnalsATS.201503-110AW

[16]

Yang I.V., Fingerlin T.E., Evans C.M., et al. MUC5B and idiopathic pulmonary fibrosis // Ann Am Thorac Soc. 2015. Vol. 12, Suppl. 2. P. S193–S199. doi: 10.1513/AnnalsATS.201503-110AW

[17]

Roy MG, Livraghi-Butrico A, Fletcher AA, et al. Muc5b is required for airway defence. Nature. 2014;505(7483):412–416. doi: 10.1038/nature12807

[18]

Roy M.G., Livraghi-Butrico A., Fletcher A.A., et al. Muc5b is required for airway defence // Nature. 2014. Vol. 505, N 7483. P. 412–416. doi: 10.1038/nature12807

[19]

Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis. Am J Pathol. 2009;175(1):3–16. doi: 10.2353/ajpath.2009.081170

[20]

Hardie W.D., Glasser S.W., Hagood J.S. Emerging concepts in the pathogenesis of lung fibrosis // Am J Pathol. 2009. Vol. 175, N 1. P. 3–16. doi: 10.2353/ajpath.2009.081170

[21]

Gupta A, Zheng SL. Genetic disorders of surfactant protein dysfunction: when to consider and how to investigate. Arch Dis Child. 2017;102(1):84–90. doi: 10.1136/archdischild-2012-303143

[22]

Gupta A., Zheng S.L. Genetic disorders of surfactant protein dysfunction: when to consider and how to investigate // Arch Dis Child. 2017. Vol. 102, N 1. P. 84–90. doi: 10.1136/archdischild-2012-303143

[23]

Tsakiri KD, Cronkhite JT, Kuan PJ, et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc Natl Acad Sci USA. 2007;104(18):7552–7557. doi: 10.1073/pnas.0701009104

[24]

Tsakiri K.D., Cronkhite J.T., Kuan P.J., et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase // Proc Natl Acad Sci USA. 2007. Vol. 104, N 18. P. 7552–7557. doi: 10.1073/pnas.0701009104

[25]

Zhang H-P, Zou J, Xie P, et al. Association of HLA and cytokine gene polymorphisms with idiopathic pulmonary fibrosis. Kaohsiung J Med Sci. 2015;31(12):613–620. doi: 10.1016/j.kjms.2015.10.007

[26]

Zhang H.-P., Zou J., Xie P., et al. Association of HLA and cytokine gene polymorphisms with idiopathic pulmonary fibrosis // Kaohsiung J Med Sci. 2015. Vol. 31, N 12. P. 613–620. doi: 10.1016/j.kjms.2015.10.007

[27]

Sheng G, Chen P, Wei Y, et al. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis. Chest. 2020;157(5):1175–1187. doi: 10.1016/j.chest.2019.10.032

[28]

Sheng G., Chen P., Wei Y., et al. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis // Chest. 2020. Vol. 157, N 5. P. 1175–1187. doi: 10.1016/j.chest.2019.10.032

[29]

Tang Y-W, Johnson JE, Browning PJ, et al. Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J Clin Microbiol. 2003;41(6):2633–2640. doi: 10.1128/jcm.41.6.2633-2640.2003

[30]

Tang Y.-W., Johnson J.E., Browning P.J., et al. Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis // J Clin Microbiol. 2003. Vol. 41, N 6. P. 2633–2640. doi: 10.1128/jcm.41.6.2633-2640.2003

[31]

Udwadia ZF, Koul PA, Richeldi L. Post-COVID lung fibrosis: the tsunami that will follow the earthquake. Lung India. 2021;38 (Suppl. 1):S41–S47. doi: 10.4103/lungindia.lungindia_818_20

[32]

Udwadia Z.F., Koul P.A., Richeldi L. Post-COVID lung fibrosis: the tsunami that will follow the earthquake // Lung India. 2021. Vol. 38, Suppl. 1. P. S41–S47. doi: 10.4103/lungindia.lungindia_818_20

[33]

Sahin M, Akkus E. Fibroblast function in COVID-19. Pathol Res Pract. 2021;219:153353. doi: 10.1016/j.prp.2021.153353

[34]

Sahin M., Akkus E. Fibroblast function in COVID-19 // Pathol Res Pract. 2021. Vol. 219. P. 153353. doi: 10.1016/j.prp.2021.153353

[35]

Liu Y, Wang W, Shiue K, et al. Risk factors for symptomatic radiation pneumonitis after stereotactic body radiation therapy (SBRT) in patients with non-small cell lung cancer. Radiother Oncol. 2021;156:231–238. doi: 10.1016/j.radonc.2020.10.015

[36]

Liu Y., Wang W., Shiue K., et al. Risk factors for symptomatic radiation pneumonitis after stereotactic body radiation therapy (SBRT) in patients with non-small cell lung cancer // Radiother Oncol. 2021. Vol. 156. P. 231–238. doi: 10.1016/j.radonc.2020.10.015

[37]

Ding NH, Li JJ, Sun LQ. Molecular mechanisms and treatment of radiation-induced lung fibrosis. Current Drug Targets. 2013:14(11):1347–1356. doi: 10.2174/13894501113149990198

[38]

Ding N.H., Li J.J., Sun L.Q. Molecular mechanisms and treatment of radiation-induced lung fibrosis // Curr Drug Targets. 2013. Vol. 14, N 11. P. 1347–1356. doi: 10.2174/13894501113149990198

[39]

Kirillov YuA, Chernov IA, Malysheva EM, et al. Development of pulmonary atelectasis after experimental radiation exposure. Clinical and Experimental Morphology. 2020;9(1):30–39. (In Russ). doi: 10.31088/CEM2020.9.1.30-39

[40]

Кириллов Ю.А., Чернов И.А., Малышева Е.М., и др. Морфогенез ателектазов легких при экспериментальном радиоиндуцированном воздействии // Клиническая и экспериментальная морфология. 2020. Т. 9, № 1. С. 30–39. doi: 10.31088/CEM2020.9.1.30-39

[41]

Davidovsky IV. General human pathology. Moscow: Izdatel’stvo «Medicine», 2nd revised and enlarged edition; 1969. P. 466. (In Russ).

[42]

Давыдовский И.В. Общая патология человека. Москва : Издательство «Медицина», 2-е издание, переработанное и дополненное, 1969. С. 466.

[43]

Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med. 2011;208(7):1339–1350. doi: 10.1084/jem.20110551

[44]

Wynn T.A. Integrating mechanisms of pulmonary fibrosis // J Exp Med. 2011. Vol. 208, N 7. P. 1339–1350. doi: 10.1084/jem.20110551

[45]

Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001

[46]

Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure // Adv Drug Deliv Rev. 2016. Vol. 97. P. 4–27. doi: 10.1016/j.addr.2015.11.001

[47]

Lech M, Anders H-J. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta (BBA) — Mol Basis Disease. 2013;1832(7):989–997. doi: 10.1016/j.bbadis.2012.12.001

[48]

Lech M., Anders H.-J. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair // Biochim Biophys Acta (BBA) — Mol Basis Disease. 2013. Vol. 1832, N 7. P. 989–997. doi: 10.1016/j.bbadis.2012.12.001

[49]

Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:123. doi: 10.3389/fphar.2014.00123

[50]

Kendall R.T., Feghali-Bostwick C.A. Fibroblasts in fibrosis: novel roles and mediators // Front Pharmacol. 2014. Vol. 5. P. 123. doi: 10.3389/fphar.2014.00123

[51]

Paltsev MA, Anichkov NM, Rybakova MG. Guide to practical exercises in pathological anatomy. Moscow: Izdatel’stvo «Medicine»; 2002. P. 555–556. (In Russ).

[52]

Пальцев М.А., Аничков Н.М., Рыбакова М.Г. Руководство к практическим занятиям по патологической анатомии. Москва : Издательство «Медицина», 2002. С. 555–556.

[53]

Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802–812. doi: 10.1038/nrm3896

[54]

Humphrey J.D., Dufresne E.R., Schwartz M.A. Mechanotransduction and extracellular matrix homeostasis // Nat Rev Mol Cell Biol. 2014. Vol. 15, N 12. P. 802–812. doi: 10.1038/nrm3896

[55]

Maharaj S, Shimbori C, Kolb M. Fibrocytes in pulmonary fibrosis: a brief synopsis. Euro Resp Rev. 2013;22(130):552–557. doi: 10.1183/09059180.00007713

[56]

Maharaj S., Shimbori C., Kolb M. Fibrocytes in pulmonary fibrosis: a brief synopsis // Euro Resp Rev. 2013. Vol. 22, N 130. P. 552–557. doi: 10.1183/09059180.00007713

[57]

Luppi F, Kalluri M, Faverio P, et al. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res. 2021;22(1):109. doi: 10.1186/s12931-021-01711-1

[58]

Luppi F., Kalluri M., Faverio P., et al. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management // Respir Res. 2021. Vol. 22, N 1. P. 109. doi: 10.1186/s12931-021-01711-1

[59]

Herzog EL, Bucala R. Fibrocytes in health and disease. Exp Hematol. 2010;38(7):548–556. doi: 10.1016/j.exphem.2010.03.004

[60]

Herzog E.L., Bucala R. Fibrocytes in health and disease // Exp Hematol. 2010. Vol. 38, N 7. P. 548–556. doi: 10.1016/j.exphem.2010.03.004

[61]

Pain M, Bermudez O, Lacoste P, et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur Respir Rev. 2014;23(131):118–130. doi: 10.1183/09059180.00004413

[62]

Pain M., Bermudez O., Lacoste P., et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype // Eur Respir Rev. 2014. Vol. 23, N 131. P. 118–130. doi: 10.1183/09059180.00004413

[63]

Ortiz-Zapater E, Signes-Costa J, Montero P, Roger I. Lung fibrosis and fibrosis in the lungs: is it all about myofibroblasts? Biomedicines. 2022;10(6):1423. doi: 10.3390/biomedicines10061423

[64]

Ortiz-Zapater E., Signes-Costa J., Montero P., Roger I. Lung fibrosis and fibrosis in the lungs: is it all about myofibroblasts? // Biomedicines. 2022. Vol. 10, N 6. P. 1423. doi: 10.3390/biomedicines10061423

[65]

Stewart ID, Nanji H, Figueredo G, et al. Circulating fibrocytes are not disease-specific prognosticators in idiopathic pulmonary fibrosis. Eur Respir J. 2021;58(1):2100172. doi: 10.1183/13993003.00172-2021

[66]

Stewart I.D., Nanji H., Figueredo G., et al. Circulating fibrocytes are not disease-specific prognosticators in idiopathic pulmonary fibrosis // Eur Respir J. 2021. Vol. 58, N 1. P. 2100172. doi: 10.1183/13993003.00172-2021

[67]

Moore BB, Kolodsick JE, Thannickal VJ, et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol. 2005;166(3):675–684. doi: 10.1016/s0002-9440(10)62289-4

[68]

Moore B.B., Kolodsick J.E., Thannickal V.J., et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury // Am J Pathol. 2005. Vol. 166, N 3. P. 675–684. doi: 10.1016/s0002-9440(10)62289-4

[69]

Jolly MK, Ward C, Eapen MS, et al. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev Dyn. 2018;247(3):346–358. doi: 10.1002/dvdy.24541

[70]

Jolly M.K., Ward C., Eapen M.S., et al. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease // Dev Dyn. 2018. Vol. 247, N 3. P. 346–358. doi: 10.1002/dvdy.24541

[71]

Salton F, Volpe MC, Confalonieri M. Epithelial-mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina (Kaunas). 2019;55(4):83. doi: 10.3390/medicina55040083

[72]

Salton F., Volpe M.C., Confalonieri M. Epithelial-mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis // Medicina (Kaunas). 2019. Vol. 55, N 4. P. 83. doi: 10.3390/medicina55040083

[73]

Kim KK, Wei Y, Szekeres C, et al. Epithelial cell α3β1 integrin links β-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest. 2009;119(1):213–224. doi: 10.1172/jci36940

[74]

Kim K.K., Wei Y., Szekeres C., et al. Epithelial cell α3β1 integrin links β-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis // J Clin Invest. 2009. Vol. 119, N 1. P. 213–224. doi: 10.1172/jci36940

[75]

Tashiro J, Rubio GA, Limper AH, et al. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med (Lausanne). 2017;4:118. doi: 10.3389/fmed.2017.00118

[76]

Tashiro J., Rubio G.A., Limper A.H., et al. Exploring animal models that resemble idiopathic pulmonary fibrosis // Front Med (Lausanne). 2017. Vol. 4. P. 118. doi: 10.3389/fmed.2017.00118

[77]

Moore BB, Hogaboam CM. Murine models of pulmonary fibrosis. Am J Physiol-Lung Cell Mol Physiol. 2008;294(2):L152–L160. doi: 10.1152/ajplung.00313.2007

[78]

Moore B.B., Hogaboam C.M. Murine models of pulmonary fibrosis // Am J Physiol-Lung Cell Mol Physiol. 2008. Vol. 294, N 2. P. L152–L160. doi: 10.1152/ajplung.00313.2007

[79]

Moeller A, Ask K, Warburton D, et al. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol. 2008;40(3):362–382. doi: 10.1016/j.biocel.2007.08.011

[80]

Moeller A., Ask K., Warburton D., et al. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? // Int J Biochem Cell Biol. 2008. Vol. 40, N 3. P. 362–382. doi: 10.1016/j.biocel.2007.08.011

[81]

Lee SH, Lee EJ, Lee SY, et al. The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice. Exp Lung Res. 2014;40(3):117–125. doi: 10.3109/01902148.2014.881930

[82]

Lee S.H., Lee E.J., Lee S.Y., et al. The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice // Exp Lung Res. 2014. Vol. 40, N 3. P. 117–125. doi: 10.3109/01902148.2014.881930

[83]

Peng R, Sridhar S, Tyagi G, et al. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for “active” disease. PLoS One. 2013;8(4):e59348. doi: 10.1371/journal.pone.0059348

[84]

Peng R., Sridhar S., Tyagi G., et al. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for “active” disease // PLoS One. 2013. Vol. 8, N 4. P. e59348. doi: 10.1371/journal.pone.0059348

[85]

Redente EF, Jacobsen KM, Solomon JJ, et al. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol-Lung Cell Mol Physiol. 2011;301(4):L510–L518. doi: 10.1152/ajplung.00122.2011

[86]

Redente E.F., Jacobsen K.M., Solomon J.J., et al. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis // Am J Physiol-Lung Cell Mol Physiol. 2011. Vol. 301, N 4. P. L510–L518. doi: 10.1152/ajplung.00122.2011

[87]

Koga Y, Satoh T, Kaira K, et al. Progression of idiopathic pulmonary fibrosis is associated with silica/silicate inhalation. Environ Sci Technol Lett. 2021;8(10):903–910. doi: 10.1021/acs.estlett.1c00659

[88]

Koga Y., Satoh T., Kaira K., et al. Progression of idiopathic pulmonary fibrosis is associated with silica/silicate inhalation // Environ Sci Technol Lett. 2021. Vol. 8, N 10. P. 903–910. doi: 10.1021/acs.estlett.1c00659

[89]

Garcia DD, Sultan NM, Yerba OR. Silica dust and tobacco smoking: association in lung damage. Rev Bras Med Trab. 2018;16(3):378–386. (In Portug). doi: 10.5327/z1679443520180262

[90]

Garcia D.D., Sultan N.M., Yerba O.R. Sílica e tabagismo: associação na produção de dano pulmonar // Rev Bras Med Trab. 2018. Vol. 16, N 3. P. 378–386. doi: 10.5327/z1679443520180262

[91]

Hunninghake GM, Hatabu H, Okajima Y, et al. MUC5B promoter polymorphism and interstitial lung abnormalities. N Engl J Med. 2013;368(23):2192−2200. doi: 10.1056/nejmoa1216076

[92]

Hunninghake G.M., Hatabu H., Okajima Y., et al. MUC5B promoter polymorphism and interstitial lung abnormalities // N Engl J Med. 2013. Vol. 368, N 23. P. 2192−2200. doi: 10.1056/nejmoa1216076

[93]

Ley B, Newton CA, Arnould I, et al. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study. Lancet Respir Med. 2017;5(8):639−647. doi: 10.1016/s2213-2600(17)30216-3

[94]

Ley B., Newton C.A., Arnould I., et al. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study // Lancet Respir Med. 2017. Vol. 5, N 8. P. 639−647. doi: 10.1016/s2213-2600(17)30216-3

[95]

Baur X, Woitowitz H-J, Budnik LT, et al. Asbestos, asbestosis, and cancer: the Helsinki criteria for diagnosis and attribution. Critical need for revision of the 2014 update. Am J Ind Med. 2017;60(5):411–421. doi: 10.1002/ajim.22709

[96]

Baur X., Woitowitz H.-J., Budnik L.T., et al. Asbestos, asbestosis, and cancer: the Helsinki criteria for diagnosis and attribution. Critical need for revision of the 2014 update // Am J Ind Med. 2017. Vol. 60, N 5. P. 411–421. doi: 10.1002/ajim.22709

[97]

Moore BB, Paine III R, Christensen PJ, et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol. 2001;167(8):4368–4377. doi: 10.4049/jimmunol.167.8.4368

[98]

Moore B.B., Paine III R., Christensen P.J., et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling // J Immunol. 2001. Vol. 167, N 8. P. 4368–4377. doi: 10.4049/jimmunol.167.8.4368

[99]

Christensen PJ, Goodman RE, Pastoriza L, et al. Induction of lung fibrosis in the mouse by intratracheal instillation of fluorescein isothiocyanate is not T-cell-dependent. Am J Pathol. 1999;155(5):1773–1779. doi: 10.1016/s0002-9440(10)65493-4

[100]

Christensen P.J., Goodman R.E., Pastoriza L., et al. Induction of lung fibrosis in the mouse by intratracheal instillation of fluorescein isothiocyanate is not T-cell-dependent // Am J Pathol. 1999. Vol. 155, N 5. P. 1773–1779. doi: 10.1016/s0002-9440(10)65493-4

[101]

Ruigrok MJR, Frijlink HW, Melgert BN, et al. Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions. Mol Ther-Methods Clin Dev. 2021;20:483–496. doi: 10.1016/j.omtm.2021.01.003

[102]

Ruigrok M.J.R., Frijlink H.W., Melgert B.N., et al. Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions // Mol Ther-Methods Clin Dev. 2021. Vol. 20. P. 483–496. doi: 10.1016/j.omtm.2021.01.003

[103]

Sime PJ, Xing Z, Graham FL, et al. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 1997;100(4):768–776. doi: 10.1172/jci119590

[104]

Sime P.J., Xing Z., Graham F.L., et al. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung // J Clin Invest. 1997. Vol. 100, N 4. P. 768–776. doi: 10.1172/jci119590

[105]

Lee CG, Cho SJ, Kang MJ, et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis. J Exp Med. 2004;200(3):377–389. doi: 10.1084/jem.20040104

[106]

Lee C.G., Cho S.J., Kang M.J., et al. Early growth response gene 1-mediated apoptosis is essential for transforming growth factor beta1-induced pulmonary fibrosis // J Exp Med. 2004. Vol. 200, N 3. P. 377–389. doi: 10.1084/jem.20040104

[107]

Sime PJ, Marr RA, Gauldie D, et al. Transfer of tumor necrosis factor-α to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol. 1998;153(3):825–832. doi: 10.1016/s0002-9440(10)65624-6

[108]

Sime P.J., Marr R.A., Gauldie D., et al. Transfer of tumor necrosis factor-α to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts // Am J Pathol. 1998. Vol. 153, N 3. P. 825–832. doi: 10.1016/s0002-9440(10)65624-6

[109]

Nakao A, Fujii M, Matsumura R, et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice. J Clin Invest. 1999;104(1):5–11. doi: 10.1172/jci6094

[110]

Nakao A., Fujii M., Matsumura R., et al. Transient gene transfer and expression of Smad7 prevents bleomycin-induced lung fibrosis in mice // J Clin Invest. 1999. Vol. 104, N 1. P. 5–11. doi: 10.1172/jci6094

[111]

Farkas L, Farkas D, Ask K, et al. VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. J Clin Invest. 2009;119(5):1298–1311. doi: 10.1172/jci36136

[112]

Farkas L., Farkas D., Ask K., et al. VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats // J Clin Invest. 2009. Vol. 119, N 5. P. 1298–1311. doi: 10.1172/jci36136

[113]

Wang X, Zhu H, Yang X, et al. Vasohibin attenuates bleomycin induced pulmonary fibrosis via inhibition of angiogenesis in mice. Pathology. 2010;42(5):457–462. doi: 10.3109/00313025.2010.493864

[114]

Wang X., Zhu H., Yang X., et al. Vasohibin attenuates bleomycin induced pulmonary fibrosis via inhibition of angiogenesis in mice // Pathology. 2010. Vol. 42, N 5. P. 457–462. doi: 10.3109/00313025.2010.493864

[115]

Sundarakrishnan A, Chen Y, Black LD, et al. Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Delivery Rev. 2018;129:78–94. doi: 10.1016/j.addr.2017.12.013

[116]

Sundarakrishnan A., Chen Y., Black L.D., et al. Engineered cell and tissue models of pulmonary fibrosis // Adv Drug Delivery Rev. 2018. Vol. 129. P. 78–94. doi: 10.1016/j.addr.2017.12.013

[117]

Seki E, De Minicis S, Österreicher CH, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med. 2007;13(11):1324–1332. doi: 10.1038/nm1663

[118]

Seki E., De Minicis S., Österreicher C.H., et al. TLR4 enhances TGF-β signaling and hepatic fibrosis // Nat Med. 2007. Vol. 13, N 11. P. 1324–1332. doi: 10.1038/nm1663

[119]

Hinz B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 2015;47:54–65. doi: 10.1016/j.matbio.2015.05.006

[120]

Hinz B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship // Matrix Biol. 2015. Vol. 47. P. 54–65. doi: 10.1016/j.matbio.2015.05.006

[121]

Smithmyer ME, Sawicki LA, Kloxin AM. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease. Biomater Sci. 2014;2(5):634–650. doi: 10.1039/c3bm60319a

[122]

Smithmyer M.E., Sawicki L.A., Kloxin A.M. Hydrogel scaffolds as in vitro models to study fibroblast activation in wound healing and disease // Biomater Sci. 2014. Vol. 2, N 5. P. 634–650. doi: 10.1039/c3bm60319a

[123]

Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol. 2014;15(10):647–664. doi: 10.1038/nrm3873

[124]

Shamir E.R., Ewald A.J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease // Nat Rev Mol Cell Biol. 2014. Vol. 15, N 10. P. 647–664. doi: 10.1038/nrm3873

[125]

Wu X, Peters-Hall JR, Bose S, et al. Human bronchial epithelial cells differentiate to 3D glandular acini on basement membrane matrix. Am J Respir Cell Mol Biol. 2011;44(6):914–921. doi: 10.1165/rcmb.2009-0329oc

[126]

Wu X., Peters-Hall J.R., Bose S., et al. Human bronchial epithelial cells differentiate to 3D glandular acini on basement membrane matrix // Am J Respir Cell Mol Biol. 2011. Vol. 44, N 6. P. 914–921. doi: 10.1165/rcmb.2009-0329oc

[127]

Prasad S, Hogaboam CM, Jarai G. Deficient repair response of PF fibroblasts in a co-culture model of epithelial injury and repair. Fibrog Tissue Repair. 2014;7(7):1–14. doi: 10.1186/1755-1536-7-7

[128]

Prasad S., Hogaboam C.M., Jarai G. Deficient repair response of PF fibroblasts in a co-culture model of epithelial injury and repair // Fibrog Tissue Repair. 2014. Vol. 7, N 7. P. 1–14. doi: 10.1186/1755-1536-7-7

[129]

Yu W, Fang X, Ewald A, et al. Formation of cysts by alveolar type II cells in three-dimensional culture reveals a novel mechanism for epithelial morphogenesis. Mol Bio Cell. 2007;18(5):1693–1700. doi: 10.1091/mbc.e06-11-1052

[130]

Yu W., Fang X., Ewald A., et al. Formation of cysts by alveolar type II cells in three-dimensional culture reveals a novel mechanism for epithelial morphogenesis // Mol Bio Cell. 2007. Vol. 18, N 5. P. 1693–1700. doi: 10.1091/mbc.e06-11-1052

[131]

Beningo KA, Wang Y-L. Double-hydrogel substrate as a model system for three-dimensional cell culture. Methods Mol Biol. 2007;370:203–212. doi: 10.1007/978-1-59745-353-0_14

[132]

Beningo K.A., Wang Y.-L. Double-hydrogel substrate as a model system for three-dimensional cell culture // Methods Mol Biol. 2007. Vol. 370. P. 203–212. doi: 10.1007/978-1-59745-353-0_14

[133]

Arora PD, Narani N, McCulloch CAG. The compliance of collagen gels regulates transforming growth factor-β induction of α-smooth muscle actin in fibroblasts. Am J Pathol. 1999;154(3):871–882. doi: 10.1016/s0002-9440(10)65334-5

[134]

Arora P.D., Narani N., McCulloch C.A.G. The compliance of collagen gels regulates transforming growth factor-β induction of α-smooth muscle actin in fibroblasts // Am J Pathol. 1999. Vol. 154, N 3. P. 871–882. doi: 10.1016/s0002-9440(10)65334-5

[135]

Uhl FE, Wagner DE, Weiss DJ. Preparation of decellularized lung matrices for cell culture and protein analysis. Methods Mol Biol. 2017;1627:253–283. doi: 10.1007/978-1-4939-7113-8_18

[136]

Uhl F.E., Wagner D.E., Weiss D.J. Preparation of decellularized lung matrices for cell culture and protein analysis // Methods Mol Biol. 2017. Vol. 1627. P. 253–283. doi: 10.1007/978-1-4939-7113-8_18

[137]

Parker MW, Rossi D, Peterson M, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest. 2014;124(4):1622–1635. doi: 10.1172/jci71386

[138]

Parker M.W., Rossi D., Peterson M., et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop // J Clin Invest. 2014. Vol. 124, N 4. P. 1622–1635. doi: 10.1172/jci71386

[139]

Lehmann M, Buhl L, Wagner D, et al. Late breaking abstract: anti-fibrotic effects of nintedanib and pirfenidone in 2D versus 3D lung cultures. Eur Respiratory Soc. 2016;48(Suppl. 60):OA478. doi: 10.1183/13993003.congress-2016.oa478

[140]

Lehmann M., Buhl L., Wagner D., et al. Late breaking abstract: anti-fibrotic effects of nintedanib and pirfenidone in 2D versus 3D lung cultures // Eur Respiratory Soc. 2016. Vol. 48, Suppl. 60. P. OA478. doi: 10.1183/13993003.congress-2016.oa478

[141]

Vickers AEM, Saulnier M, Cruz E, et al. Organ slice viability extended for pathway characterization: an in vitro model to investigate fibrosis. Toxicol Sci. 2004;82(2):534–544. doi: 10.1093/toxsci/kfh285

[142]

Vickers A.E.M., Saulnier M., Cruz E., et al. Organ slice viability extended for pathway characterization: an in vitro model to investigate fibrosis // Toxicol Sci. 2004. Vol. 82, N 2. P. 534–544. doi: 10.1093/toxsci/kfh285

[143]

Surolia R, Li FJ, Wang Z, et al. 3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs. JCI Insight. 2017;2(2):e91377. doi: 10.1172/jci.insight.91377

[144]

Surolia R., Li F.J., Wang Z., et al. 3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs // JCI Insight. 2017. Vol. 2, N 2. P. e91377. doi: 10.1172/jci.insight.91377

[145]

Fang Y, Eglen RM. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017;22(5):456–472. doi: 10.1177/1087057117696795

[146]

Fang Y., Eglen R.M. Three-dimensional cell cultures in drug discovery and development // SLAS Discov. 2017. Vol. 22, N 5. P. 456–472. doi: 10.1177/1087057117696795

[147]

Strikoudis A, Cieślak A, Loffredo L, et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep. 2019;27(12):3709–3723.e5. doi: 10.1016/j.celrep.2019.05.077

[148]

Strikoudis A., Cieślak A., Loffredo L., et al. Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells // Cell Rep. 2019. Vol. 27, N 12. P. 3709–3723.e5. doi: 10.1016/j.celrep.2019.05.077

[149]

Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586–1597. doi: 10.1016/j.cell.2016.05.082

[150]

Clevers H. Modeling development and disease with organoids // Cell. 2016. Vol. 165, N 7. P. 1586–1597. doi: 10.1016/j.cell.2016.05.082

[151]

Wilkinson DC, Alva-Ornelas JA, Sucre JMS, et al. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl Med. 2017;6(2):622–633. doi: 10.5966/sctm.2016-0192

[152]

Wilkinson D.C., Alva-Ornelas J.A., Sucre J.M.S., et al. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling // Stem Cells Transl Med. 2017. Vol. 6, N 2. P. 622–633. doi: 10.5966/sctm.2016-0192

[153]

Henry E, Cores J, Hensley MT, et al. Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin-induced pulmonary fibrosis. Stem Cells Transl Med. 2015;4(11):1265–1274. doi: 10.5966/sctm.2015-0062

[154]

Henry E., Cores J., Hensley M.T., et al. Adult lung spheroid cells contain progenitor cells and mediate regeneration in rodents with bleomycin-induced pulmonary fibrosis // Stem Cells Transl Med. 2015. Vol. 4, N 11. P. 1265–1274. doi: 10.5966/sctm.2015-0062

[155]

Stucki JD, Hobi N, Galimov A, et al. Medium throughput breathing human primary cell alveolus-on-chip model. Sci Rep. 2018;8(1):14359. doi: 10.1038/s41598-018-32523-x

[156]

Stucki J.D., Hobi N., Galimov A., et al. Medium throughput breathing human primary cell alveolus-on-chip model // Sci Rep. 2018. Vol. 8, N 1. P. 14359. doi: 10.1038/s41598-018-32523-x

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/