Сell model for experimental research in keratoconus pathogenesis
Anastasija M. Subbot , Ivan A. Novikov , Ljudmila S. Patejuk , Anna V. Kobzeva , Sergej Je. Avetisov
Genes & Cells ›› 2023, Vol. 18 ›› Issue (1) : 69 -77.
Сell model for experimental research in keratoconus pathogenesis
INTRODUCTION: Certain mineral elements dismetabolism is known to play an important part in the pathogenesis of the corneal degenerative and dystrophic diseases, as metalloenzymes participate in connective tissues metabolism affecting their properties. Thus, in keratoconus corneal tissue is depleted in iron, copper and zinc, what could be the underlying cause of cornea biomechanical properties impairment. Keratoconus modeling is complicated and practically not reproducible in animals, therefore cell models elaboration is very much in demand. Definite mineral elements content must be reduced in order to simulate pathological changes specific for keratoconic corneas.
PURPOSE: The aim of this study was an elaboration of a cell model suitable for keratoconus pathogenesis research. This goal achieving involved solving the following tasks: 1) to develop a tissue-engineered system that mimic healthy corneal stroma; 2) to develop a technique for selective depletion of the nutrient medium by mineral elements involved in keratoconus pathogenesis; 3) to assess the possibility of the designed tissue-engineered system growth in the depleted nutrient medium.
MATERIAL AND METHODS: The study was carried out with the primary culture of human keratocytes, which were used to build tissue-engineered systems of three types: on silicone, on a membrane, without a carrier. Cell cultures morphology was evaluated by light and electron microscopy. The nutrient media were zinc depleted via decationization of fetal bovine serum using two types of ion-exchange resins; mineral elements concentrations were evaluated by means of inductively coupled plasma mass spectrometry.
RESULTS: The tissue system engineered without a carrier in form of cell sheet was chosen as the most convenient model. The decationization of the serum by means of Chelex 100 resin was shown to be a successful method for tenfold zinc concentration reduction in the nutrient medium. Keratocytes cultivation in the form of cell sheet on a zinc-depleted medium was successfully approved.
CONCLUSION: Elaborated tissue-engineered system could be considered as a model of the corneal stroma under specific for keratoconus conditions of zinc depletion.
cell sheets / tissue model / keratoconus / zinc / mineral elements depletion / ICP-MS
| [1] |
Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ. The pathogenesis of keratoconus. Eye (Lond). 2014;28(2):189–195. doi: 10.1038/eye.2013.278 |
| [2] |
Davidson A.E., Hayes S., Hardcastle A.J., Tuft S.J. The pathogenesis of keratoconus // Eye (Lond). 2014. Vol. 28, N 2. P. 189–195. doi: 10.1038/eye.2013.278 |
| [3] |
Soiberman U, Foster JW, Jun AS, Chakravarti S. Pathophysiology of keratoconus: what do we know today. Open Ophthalmol J. 2017;11:252–261. doi: 10.2174/1874364101711010252 |
| [4] |
Soiberman U., Foster J.W., Jun A.S., Chakravarti S. Pathophysiology of keratoconus: what do we know today // Open Ophthalmol J. 2017. Vol. 11. P. 252–261. doi: 10.2174/1874364101711010252 |
| [5] |
Mas Tur V, MacGregor C, Jayaswal R, et al. A review of keratoconus: diagnosis, pathophysiology, and genetics. Sur Ophthalmol. 2017;62(6):770–783. doi: 10.1016/j.survophthal.2017.06.009 |
| [6] |
Mas Tur V., MacGregor C., Jayaswal R., et al. A review of keratoconus: diagnosis, pathophysiology, and genetics // Sur Ophthalmol. 2017. Vol. 62, N 6. P. 770–783. doi: 10.1016/j.survophthal.2017.06.009 |
| [7] |
Ferrari G, Rama P. The keratoconus enigma: a review with emphasis on pathogenesis. Ocul Surf. 2020;18(3):363–373. doi: 10.1016/j.jtos.2020.03.006 |
| [8] |
Ferrari G., Rama P. The keratoconus enigma: a review with emphasis on pathogenesis // Ocul Surf. 2020. Vol. 18, N 3. P. 363–373. doi: 10.1016/j.jtos.2020.03.006 |
| [9] |
Kulicov AN, Churashov SV, Kamilova TA, Reituzov VA. Molecular genetic aspects of keratoconus pathogenesis. Ophthalmology Journal. 2017;10(2):62–71. (In Russ). doi: 10.17816/OV10262-71 |
| [10] |
Куликов А.Н., Чурашов С.В., Камилова Т.А., Рейтузов В.А. Молекулярно-генетические аспекты патогенеза кератоконуса // Офтальмологические ведомости. 2017. Т. 10, № 2. С. 62–71. doi: 10.17816/OV10262-71 |
| [11] |
Kasparova EA. Modern ideas about the etiology and pathogenesis of keratoconus. The Russian Annals of Ophthalmology. 2002;118(3):50–53. (In Russ). |
| [12] |
Каспарова Е.А. Современные представления об этиологии и патогенезе кератоконуса // Вестник офтальмологии. 2002. Т. 118, № 3. С. 50–53. |
| [13] |
Avetisov SE, Novikov IA, Pateiuk LS. Keratoconus: etiological factors and accompanying manifestations. The Russian Annals of Ophthalmology. 2014;130(4):110–116. (In Russ). |
| [14] |
Аветисов С.Э., Новиков И.А., Патеюк Л.С. Кератоконус: этиологические факторы и сопутствующие проявления // Вестник офтальмологии. 2014. Т. 130, № 4. С. 110–116. |
| [15] |
Avetisov SE, Mamikonyan VR, Novikov IA, et al. Abnormal distribution of trace elements in keratoconic corneas. The Russian Annals of Ophthalmology. 2015;131(6):34–42. (In Russ). |
| [16] |
Аветисов С.Э., Мамиконян В.Р., Новиков И.А., и др. Перераспределение минеральных элементов в роговице при кератоконусе // Вестник офтальмологии. 2015. Т. 131, № 6. С. 34–42. |
| [17] |
Avcyn AP, Zhavoronkov AA, Rish MA, i dr. Mikrojelementozy cheloveka: jetiologija, klassifikacija, organopatologija. Moscow: Medicina; 1991. (In Russ). |
| [18] |
Авцын А.П., Жаворонков А.А., Риш М.А., и др. Микроэлементозы человека: этиология, классификация, органопатология. Москва : Медицина, 1991. |
| [19] |
Severin ES. Biohimija. Moscow: GEOTAR-Media; 2020. (In Russ). |
| [20] |
Северин Е.С. Биохимия. Москва : ГЭОТАР-Медиа, 2020. |
| [21] |
Blanco A, Blanco G. Medical biochemistry. Academic Press; 2017. 806 p. |
| [22] |
Blanco A., Blanco G. Medical biochemistry. Academic Press, 2017. 806 p. |
| [23] |
Karamichos D, Zareian R, Guo X, et al. Novel in vitro model for keratoconus disease. J Funct Biomater. 2012;3(4):760–775. doi: 10.3390/jfb3040760 |
| [24] |
Karamichos D., Zareian R., Guo X., et al. Novel in vitro model for keratoconus disease // J Funct Biomater. 2012. Vol. 3, N 4. P. 760–775. doi: 10.3390/jfb3040760 |
| [25] |
Cho YE, Lomeda RA, Ryu SH, et al. Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells. Nutr Res Pract. 2007;1(1):29–35. doi: 10.4162/nrp.2007.1.1.29 |
| [26] |
Cho Y.E., Lomeda R.A., Ryu S.H., et al. Cellular Zn depletion by metal ion chelators (TPEN, DTPA and chelex resin) and its application to osteoblastic MC3T3-E1 cells // Nutr Res Pract. 2007. Vol. 1, N 1. P. 29–35. doi: 10.4162/nrp.2007.1.1.29 |
| [27] |
Carpentieri U, Myers J, Daeschner CW 3rd, Haggard ME. Observations on the use of a cation exchange resin for the preparation of metal-depleted media for lymphocyte culture. J Biochem Biophys Methods. 1987;14(2):93–100. doi: 10.1016/0165-022x(87)90044-3 |
| [28] |
Carpentieri U., Myers J., Daeschner C.W. 3rd, Haggard M.E. Observations on the use of a cation exchange resin for the preparation of metal-depleted media for lymphocyte culture // J Biochem Biophys Methods. 1987. Vol. 14, N 2. P. 93–100. doi: 10.1016/0165-022x(87)90044-3 |
| [29] |
Dolar-Szczasny J, Święch A, Flieger J, et al. Levels of trace elements in the aqueous humor of cataract patients measured by the inductively coupled plasma optical emission spectrometry. Molecules. 2019;24(22):4127. doi: 10.3390/molecules24224127 |
| [30] |
Dolar-Szczasny J., Święch A., Flieger J., et al. Levels of trace elements in the aqueous humor of cataract patients measured by the inductively coupled plasma optical emission spectrometry // Molecules. 2019. Vol. 24, N 22. P. 4127. doi: 10.3390/molecules24224127 |
| [31] |
Cancarini A, Fostinelli J, Napoli L, et al. Trace elements and diabetes: assessment of levels in tears and serum. Exp Eye Res. 2017;154:47–52. doi: 10.1016/j.exer.2016.10.020 |
| [32] |
Cancarini A., Fostinelli J., Napoli L., et al. Trace elements and diabetes: assessment of levels in tears and serum // Exp Eye Res. 2017. Vol. 154. P. 47–52. doi: 10.1016/j.exer.2016.10.020 |
| [33] |
Sharif R, Priyadarsini S, Rowsey TG, et al. Corneal tissue engineering: an in vitro model of the stromal-nerve interactions of the human cornea. J Vis Exp. 2018;(131):e56308. doi: 10.3791/56308 |
| [34] |
Sharif R., Priyadarsini S., Rowsey T.G., et al. Corneal tissue engineering: an in vitro model of the stromal-nerve interactions of the human cornea // J Vis Exp. 2018. N 131. P. e56308. doi: 10.3791/56308 |
| [35] |
Ghezzi CE, Rnjak-Kovacina J, Kaplan DL. Corneal tissue engineering: recent advances and future perspectives. Tissue Eng Part B Rev. 2015;21(3):278–287. doi: 10.1089/ten.TEB.2014.0397 |
| [36] |
Ghezzi C.E., Rnjak-Kovacina J., Kaplan D.L. Corneal tissue engineering: recent advances and future perspectives // Tissue Eng Part B Rev. 2015. Vol. 21, N 3. P. 278–287. doi: 10.1089/ten.TEB.2014.0397 |
| [37] |
Karamichos D. Ocular tissue engineering: current and future directions. J Funct Biomater. 2015;6(1):77–80. doi: 10.3390/jfb6010077 |
| [38] |
Karamichos D. Ocular tissue engineering: current and future directions // J Funct Biomater. 2015. Vol. 6, N 1. P. 77–80. doi: 10.3390/jfb6010077 |
| [39] |
Karamichos D, Hjortdal J. Keratoconus: tissue engineering and biomaterials. J Funct Biomater. 2014;5(3):111–134. doi: 10.3390/jfb5030111 |
| [40] |
Karamichos D., Hjortdal J. Keratoconus: tissue engineering and biomaterials // J Funct Biomater. 2014. Vol. 5, N 3. P. 111–134. doi: 10.3390/jfb5030111 |
| [41] |
Karamichos D, Hutcheon AE, Rich CB, et al. In vitro model suggests oxidative stress involved in keratoconus disease. Sci Rep. 2014;(4):4608. doi: 10.1038/srep04608 |
| [42] |
Karamichos D., Hutcheon A.E., Rich C.B., et al. In vitro model suggests oxidative stress involved in keratoconus disease // Sci Rep. 2014. N 4. P. 4608. doi: 10.1038/srep04608 |
| [43] |
Lasagni Vitar RM, Bonelli F, Rama P, Ferrari G. Nutritional and metabolic imbalance in keratoconus. Nutrients. 2022;14(4):913. doi: 10.3390/nu14040913 |
| [44] |
Lasagni Vitar R.M., Bonelli F., Rama P., Ferrari G. Nutritional and metabolic imbalance in keratoconus // Nutrients 2022. Vol. 14, N 4. P. 913. doi: 10.3390/nu14040913 |
Subbot A.M., Novikov I.A., Patejuk L.S., Kobzeva A.V., Avetisov S.J.
/
| 〈 |
|
〉 |