Nestin gene expression in stromal precursor cells from the human bone marrow
Alena I. Dorofeeva , Tat'jana F. Savvateeva , Irina N. Shipounova
Genes & Cells ›› 2023, Vol. 18 ›› Issue (1) : 53 -60.
Nestin gene expression in stromal precursor cells from the human bone marrow
INTRODUCTION: The hierarchy of stromal progenitors from the bone marrow is poorly characterized; multipotent mesenchymal stromal cells and colony-forming units of fibroblasts are isolated in culture. Mesenchymal stem cells do not have a unique combination of surface antigens, making it difficult to obtain the pure population. The expression of the nestin gene is often used as a marker of these cells.
AIM: To evaluate the level of expression of the nestin gene in multipotent mesenchymal stromal cells and in colony-forming units of fibroblasts and to characterize the change in its expression during the transition from oligopotent progenitor cells to monopotent ones.
MATERIALS AND METHODS: Stromal progenitors were analyzed in bone marrow samples from 19 donors by standard methods. A total of 296 individual clones of fibroblast colony-forming units were obtained from the same bone marrow samples. The cells were analyzed for the ability to differentiate toward the adipogenic and osteogenic lineages. Relative expression level of nestin gene was analyzed in all cells.
RESULTS: Mean relative expression level of nestin did not differ significantly in multipotent mesenchymal stromal cells (0.41±0.13) and in the total population of colony-forming units of fibroblasts (0.24±0.05). In individual clones of colony-forming units of fibroblasts, nestin expression was not significantly higher than in the total population (0.31±0.04). When analyzing colony-forming units of fibroblasts differing in their differentiation potential, the highest expression of nestin was found in the group of monopotent osteogenic progenitors, while its expression was significantly lower in oligopotent progenitors.
CONCLUSION: Nestin gene expression in mesenchymal stromal progenitors from the bone marrow is not specific for mesenchymal stem cells and cannot be used as a unique marker of this cell type. According to our data, a high level of nestin expression rather identifies monopotent osteogenic progenitors.
mesenchymal stromal cells / colony forming units of fibroblasts / gene expression / nestin
| [1] |
Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–650. doi: 10.1002/jor.1100090504 |
| [2] |
Caplan A.I. Mesenchymal stem cells // J Orthop Res. 1991. Vol. 9, N 5. P. 641–650. doi: 10.1002/jor.1100090504 |
| [3] |
Kuznetsov SA, Friedenstein AJ, Robey PG. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol. 1997;97(3):561–570. doi: 10.1046/j.1365-2141.1997.902904.x |
| [4] |
Kuznetsov S.A., Friedenstein A.J., Robey P.G. Factors required for bone marrow stromal fibroblast colony formation in vitro // Br J Haematol. 1997. Vol. 97, N 3. P. 561–570. doi: 10.1046/j.1365-2141.1997.902904.x |
| [5] |
Dahlstrand J, Lardelli M, Lendahl U. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res. 1995;84(1):109–129. doi: 10.1016/0165-3806(94)00162-s |
| [6] |
Dahlstrand J., Lardelli M., Lendahl U. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system // Brain Res Dev Brain Res. 1995. Vol. 84, N 1. P. 109–129. doi: 10.1016/0165-3806(94)00162-s |
| [7] |
Pinho S, Lacombe J, Hanoun M, et al. PDGFR and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013;210(7):1351–1367. doi: 10.1084/jem.20122252 |
| [8] |
Pinho S., Lacombe J., Hanoun M., et al. PDGFR and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion // J Exp Med. 2013. Vol. 210, N 7. P. 1351–1367. doi: 10.1084/jem.20122252 |
| [9] |
Mii S, Amoh Y, Katsuoka K, Hoffman RM. Comparison of nestin-expressing multipotent stem cells in the tongue fungiform papilla and vibrissa hair follicle. J Cell Biochem. 2014;115(6):1070–1076. doi: 10.1002/jcb.24696 |
| [10] |
Mii S., Amoh Y., Katsuoka K., Hoffman R.M. Comparison of nestin-expressing multipotent stem cells in the tongue fungiform papilla and vibrissa hair follicle // J Cell Biochem. 2014. Vol. 115, N 6. P. 1070–1076. doi: 10.1002/jcb.24696 |
| [11] |
Calderone A. The biological role of nestin (+)-cells in physiological and pathological cardiovascular remodeling. Front Cell Dev Biol. 2018;6:15. doi: 10.3389/fcell.2018.00015 |
| [12] |
Calderone A. The biological role of nestin (+)-cells in physiological and pathological cardiovascular remodeling // Front Cell Dev Biol. 2018. Vol. 6. P. 15. doi: 10.3389/fcell.2018.00015 |
| [13] |
Jiang MH, Cai B, Tuo Y, et al. Characterization of nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction. Cell Res. 2014;24(12):1466–1485. doi: 10.1038/cr.2014.149 |
| [14] |
Jiang M.H., Cai B., Tuo Y., et al. Characterization of nestin-positive stem Leydig cells as a potential source for the treatment of testicular Leydig cell dysfunction // Cell Res. 2014. Vol. 24, N 12. P. 1466–1485. doi: 10.1038/cr.2014.149 |
| [15] |
Méndez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–834. doi: 10.1038/nature09262 |
| [16] |
Méndez-Ferrer S., Michurina T.V., Ferraro F., et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche // Nature. 2010. Vol. 466, N 7308. P. 829–834. doi: 10.1038/nature09262 |
| [17] |
Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177–2195. doi: 10.1007/s00018-018-2794-z |
| [18] |
Bernal A., Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications // Cell Mol Life Sci. 2018. Vol. 75, N 12. P. 2177–2195. doi: 10.1007/s00018-018-2794-z |
| [19] |
Neradil J, Veselska R. Nestin as a marker of cancer stem cells. Cancer Sci. 2015;106(7):803–811. doi: 10.1111/cas.12691 |
| [20] |
Neradil J., Veselska R. Nestin as a marker of cancer stem cells // Cancer Sci. 2015. Vol. 106, N 7. P. 803–811. doi: 10.1111/cas.12691 |
| [21] |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905 |
| [22] |
Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy. 2006. Vol. 8, N 4. P. 315–317. doi: 10.1080/14653240600855905 |
| [23] |
Kapranov NM, Davydova YO, Galtseva IV, et al. Alterations of multipotent mesenchymal stromal cells induced by interaction with allogeneic lymphocytes in vitro. Int J Stem Cell Res Transplant. 2017;5(2):277–286. |
| [24] |
Kapranov N.M., Davydova Y.O., Galtseva I.V., et al. Alterations of multipotent mesenchymal stromal cells induced by interaction with allogeneic lymphocytes in vitro // Int J Stem Cell Res Transplant. 2017. Vol. 5, 2. P. 277–286. |
| [25] |
Shipounova IN, Petinati NA, Bigildeev AE, et al. Hierarchy of mesenchymal stem cells: comparison of multipotent mesenchymal stromal cells with fibroblast colony forming units. J Biomed Sci Eng. 2013;6(8A):66–73. doi: 10.4236/jbise.2013.68A1007 |
| [26] |
Shipounova I.N., Petinati N.A., Bigildeev A.E., et al. Hierarchy of mesenchymal stem cells: comparison of multipotent mesenchymal stromal cells with fibroblast colony forming units // J Biomed Sci Eng. 2013. Vol. 6, N 8A. P. 66–73. doi: 10.4236/jbise.2013.68A1007 |
| [27] |
Shipounova IN, Petrova TV, Svinareva DA, et al. Alterations in hematopoietic microenvironment in patients with aplastic anemia. Clin Transl Sci. 2009;2(1):67–74. doi: 10.1111/j.1752-8062.2008.00074.x |
| [28] |
Shipounova I.N., Petrova T.V., Svinareva D.A., et al. Alterations in hematopoietic microenvironment in patients with aplastic anemia // Clin Transl Sci. 2009. Vol. 2, N 1. P. 67–74. doi: 10.1111/j.1752-8062.2008.00074.x |
| [29] |
Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc. 2006;1(2):581–585. doi: 10.1038/nprot.2006.83 |
| [30] |
Chomczynski P., Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on // Nat Protoc. 2006. Vol. 1, N 2. P. 581–585. doi: 10.1038/nprot.2006.83 |
| [31] |
Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4(5):267–274. |
| [32] |
Friedenstein A.J., Gorskaja J.F., and Kulagina N.N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs // Exp Hematol. 1976. Vol. 4, N 5. P. 267–274. |
| [33] |
Sygnecka K, Heider A, Scherf N, et al. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model. Stem Cells Dev. 2015;24(7):824–835. doi: 10.1089/scd.2014.0262 |
| [34] |
Sygnecka K., Heider A., Scherf N., et al. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model // Stem Cells Dev. 2015. Vol. 24, N 7. P. 824–835. doi: 10.1089/scd.2014.0262 |
| [35] |
Hayati AR, Nur Fariha MM, Tan GC, et al. Potential of human decidua stem cells for angiogenesis and neurogenesis. Arch Med Res. 2011;42(4):291–300. doi: 10.1016/j.arcmed.2011.06.005 |
| [36] |
Hayati A.R., Nur Fariha M.M., Tan G.C., et al. Potential of human decidua stem cells for angiogenesis and neurogenesis // Arch Med Res. 2011. Vol. 42, N 4. P. 291–300. doi: 10.1016/j.arcmed.2011.06.005 |
| [37] |
Fournier BP, Loison-Robert LS, Ferré FC, et al. Characterisation of human gingival neural crest-derived stem cells in monolayer and neurosphere cultures. Eur Cells Mater. 2016;31:40–58. doi: 10.22203/ecm.v031a04 |
| [38] |
Fournier B.P., Loison-Robert L.S., Ferré F.C., et al. Characterisation of human gingival neural crest-derived stem cells in monolayer and neurosphere cultures // Eur Cells Mater. 2016. Vol. 31. P. 40–58. doi: 10.22203/ecm.v031a04 |
| [39] |
Tournaire G, Stegen S, Giacomini G, et al. Nestin-GFP transgene labels skeletal progenitors in the periosteum. Bone. 2020;133:115259. doi: 10.1016/j.bone.2020.115259 |
| [40] |
Tournaire G., Stegen S., Giacomini G., et al. Nestin-GFP transgene labels skeletal progenitors in the periosteum // Bone. 2020. Vol. 133. P. 115259. doi: 10.1016/j.bone.2020.115259 |
| [41] |
Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature. 2012;481(7382):457–462. doi: 10.1038/nature10783 |
| [42] |
Ding L., Saunders T.L., Enikolopov G., Morrison S.J. Endothelial and perivascular cells maintain haematopoietic stem cells // Nature. 2012. Vol. 481, N 7382. P. 457–462. doi: 10.1038/nature10783 |
| [43] |
Kunisaki Y, Bruns I, Schieirmann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637–643. doi: 10.1038/nature12612 |
| [44] |
Kunisaki Y., Bruns I., Schieirmann C., et al. Arteriolar niches maintain haematopoietic stem cell quiescence // Nature. 2013. Vol. 502, N 7473. P. 637–643. doi: 10.1038/nature12612 |
Dorofeeva A.I., Savvateeva T.F., Shipounova I.N.
/
| 〈 |
|
〉 |