Cultivation of limbal stem cells on a biopolymer carrier (preliminary study)
Yang Yu , Andrey Yu. Andreev , Olga S. Rogovaya , Anastasia M. Subbot , Ekaterina A. Vorotelyak , Egor O. Osidak , Raisa R. Ibragimova
Genes & Cells ›› 2023, Vol. 18 ›› Issue (1) : 79 -88.
Cultivation of limbal stem cells on a biopolymer carrier (preliminary study)
BACKGROUND: Limbal stem cell deficiency is a complicated pathology of ocular surface, which is not always helped by conservative methods of treatment and surgery is limited by available sources of tissue. Consequently, searching for new effective methods of its treatment is now gaining popularity. The most promising approach is transplantation of tissue-engineered constructs consisting of cultured limbal stem cells (LSCs) and variety of biopolymer carriers.
AIM: This study was performed to obtain and characterize a tissue-engineered constructs consisting of cultured LSCs and collagen membrane.
MATERIALS AND METODS: The study was performed at the Krasnov Research Institute at the Krasnov Research Institute of Eye Diseases and Koltzov Institute of Developmental Biology in cooperation with IMTEK Ltd. with a series of experiments. Two Chinchilla rabbits with an average weight of 3.5 kg and age of 6 months have been involved in this trial. LSCs were isolated and cultured in vitro from the healthy eye of rabbits using a method modified by the authors. The abtained cells were then cultured for 14 days and transplanted to the collagen membrane, which was then examined using immunohistochemical analysis.
RESULTS: The cells isolated from the biopsy were a mixture of fibroblast-type cells and cells with characteristics of LSC. They maintained high survivability, proliferativity, phenotype and stemness on the collagen carrier according to immunofluorescent study.
CONCLUSIONS: Thus, the abstained tissue-engineered constructs could be used for further transplantation to the affected eye with limbal stem cell deficiency under experimental conditions.
collagen / tissue-engineered construct / TEC / limbal stem cell deficiency / LSCD / cultivation of limbal stem cells / limbal stem cells
| [1] |
Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103(1):49–62. doi: 10.1083/jcb.103.1.49 |
| [2] |
Schermer A., Galvin S., Sun T.T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells // J Cell Biol. 1986. Vol. 103, N 1. P. 49–62. doi: 10.1083/jcb.103.1.49 |
| [3] |
Li G, Zhang Y, Cai S, et al. Human limbal niche cells are a powerful regenerative source for the prevention of limbal stem cell deficiency in a rabbit model. Sci Rep. 2018;8(1):6566. doi: 10.1038/s41598-018-24862-6 |
| [4] |
Li G., Zhang Y., Cai S., et al. Human limbal niche cells are a powerful regenerative source for the prevention of limbal stem cell deficiency in a rabbit model // Sci Rep. 2018. Vol. 8, N 1. P. 6566. doi: 10.1038/s41598-018-24862-6 |
| [5] |
Deng SX, Borderie V, Chan CC, et al. Global consensus on definition, classification, diagnosis, and staging of limbal stem cell deficiency. Cornea. 2019;38(3):364–375. doi: 10.1097/ICO.0000000000001820 |
| [6] |
Deng S.X., Borderie V., Chan C.C., et al. Global consensus on definition, classification, diagnosis, and staging of limbal stem cell deficiency // Cornea. 2019. Vol. 38, N 3. P. 364–375. doi: 10.1097/ICO.0000000000001820 |
| [7] |
Azari A, Rapuano CJ. Autologous serum eye drops for the treatment of ocular surface disease. Eye Contact Lens. 2015;41(3):133–140. doi: 10.1097/ICL.0000000000000104 |
| [8] |
Azari A., Rapuano C.J. Autologous serum eye drops for the treatment of ocular surface disease // Eye Contact Lens. 2015. Vol. 41, N 3. P. 133–140. doi: 10.1097/ICL.0000000000000104 |
| [9] |
Lim L, Lim EWL. Therapeutic contact lenses in the treatment of corneal and ocular surface diseases — a review. Asia Pac J Ophthalmol (Phila). 2020;9(6):524–532. doi: 10.1097/APO.0000000000000331 |
| [10] |
Lim L., Lim E.W.L. Therapeutic contact lenses in the treatment of corneal and ocular surface diseases — a review // Asia Pac J Ophthalmol (Phila). 2020. Vol. 9, N 6. P. 524–532. doi: 10.1097/APO.0000000000000331 |
| [11] |
Kim B, Bakhtiari P. Medical management of limbal stem cell deficiency with anti-inflammatory therapy and tear film optimization. Investig Ophthalmol Vis Sci. 2013;54:545. |
| [12] |
Kim B., Bakhtiari P. Medical management of limbal stem cell deficiency with anti-inflammatory therapy and tear film optimization // Investig Ophthalmol Vis Sci. 2013. Vol. 54. P. 545. |
| [13] |
Ramachandran C, Basu S, Sangwan VS, et al. Concise review: the coming of age of stem cell treatment for corneal surface damage. Stem Cells Transl Med. 2014;3(10):1160–1168. doi: 10.5966/sctm.2014-0064 |
| [14] |
Ramachandran C., Basu S., Sangwan V.S., et al. Concise review: the coming of age of stem cell treatment for corneal surface damage // Stem Cells Transl Med. 2014. Vol. 3, N 10. P. 1160–1168. doi: 10.5966/sctm.2014-0064 |
| [15] |
Galindo S, de la Mata A, López-Paniagua M, et al. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: state of the art. Stem Cell Res Ther. 2021;12(1):60. doi: 10.1186/s13287-020-02129-0 |
| [16] |
Galindo S., de la Mata A., López-Paniagua M., et al. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: state of the art // Stem Cell Res Ther. 2021. Vol. 12, N 1. P. 60. doi: 10.1186/s13287-020-02129-0 |
| [17] |
Anderson DF, Ellies P, Pires RT, Tseng SC. Amniotic membrane transplantation for partial limbal stem cell deficiency. Br J Ophthalmol. 2001;85(5):567–575. doi: 10.1136/bjo.85.5.567 |
| [18] |
Anderson D.F., Ellies P., Pires R.T., Tseng S.C. Amniotic membrane transplantation for partial limbal stem cell deficiency // Br J Ophthalmol. 2001. Vol. 85, N 5. P. 567–575. doi: 10.1136/bjo.85.5.567 |
| [19] |
Karpovich VV, Kulikov AN, Churashov SV, et al. Research of the properties of synthetic polymer matrices made for transplantation of cultured limbal stem cells to eliminate a limbal deficiency. Bulletin of the Russian Military Medical Academy. 2019;1(65):165–170. (In Russ). |
| [20] |
Карпович В.В., Куликов А.Н., Чурашов С.В., и др. Исследование свойств синтетических полимерных матриц, изготовленных для трансплантации культивированных лимбальных стволовых клеток с целью устранения лимбальной недостаточности // Вестник Российской Военно-медицинской академии. 2019. № 1. С. 165–170. |
| [21] |
Tan XW, Hartman L, Tan KP, et al. In vivo biocompatibility of two PEG/PAA interpenetrating polymer networks as corneal inlays following deep stromal pocket implantation. J Mater Sci Mater Med. 2013;24(4):967–977. doi: 10.1007/s10856-012-4848-3 |
| [22] |
Tan X.W., Hartman L., Tan K.P., et al. In vivo biocompatibility of two PEG/PAA interpenetrating polymer networks as corneal inlays following deep stromal pocket implantation // J Mater Sci Mater Med. 2013. Vol. 24, N 4. P. 967–977. doi: 10.1007/s10856-012-4848-3 |
| [23] |
Bezushko AV, Dubovikov AS, Kulikov AN, et al. The use of collagen scaffold and amniotic membrane with laboratory-reared stem cells to manage limbal deficiency: experimental study. Pacific Medical Journal. 2019;(2):54–57. (In Russ). doi: 10.17238/PmJ1609-1175.2019.2.54-57 |
| [24] |
Безушко А.В., Дубовиков А.С., Куликов А.Н., и др. Применение коллагенового скаффолда и амниотической мембраны с культивируемыми стволовыми клетками лимба для устранения лимбальной недостаточности: экспериментальное исследование // Тихоокеанский медицинский журнал. 2019. № 2. С. 54–57. doi: 10.17238/PmJ1609-1175.2019.2.54-57 |
| [25] |
Chae JJ, Ambrose WM, Espinoza FA, et al. Regeneration of corneal epithelium utilizing a collagen vitrigel membrane in rabbit models for corneal stromal wound and limbal stem cell deficiency. Acta Ophthalmol. 2015;93(1):e57–e66. doi: 10.1111/aos.12503 |
| [26] |
Chae J.J., Ambrose W.M., Espinoza F.A., et al. Regeneration of corneal epithelium utilizing a collagen vitrigel membrane in rabbit models for corneal stromal wound and limbal stem cell deficiency // Acta Ophthalmol. 2015. Vol. 93, N 1. P. e57–e66. doi: 10.1111/aos.12503 |
| [27] |
Guérin LP, Larouche D, Morcos MW, et al. Cultured autologous corneal epithelia for the treatment of unilateral limbal stem cell deficiency: a case series of 15 patients. Biomedicines. 2022;10(8):1958. doi: 10.3390/biomedicines10081958 |
| [28] |
Guérin L.P., Larouche D., Morcos M.W., et al. Cultured autologous corneal epithelia for the treatment of unilateral limbal stem cell deficiency: a case series of 15 patients // Biomedicines. 2022. Vol. 10, N 8. P. 1958. doi: 10.3390/biomedicines10081958 |
| [29] |
Osidak EO, Andreev AY, Avetisov SE, et al. Corneal stroma regeneration with collagen-based hydrogel as an artificial stroma equivalent: a comprehensive in vivo study. Polymers. 2022;14(19):4017. doi: 10.3390/polym14194017 |
| [30] |
Osidak E.O., Andreev A.Y., Avetisov S.E., et al. Corneal stroma regeneration with collagen-based hydrogel as an artificial stroma equivalent: a comprehensive in vivo study // Polymers. 2022. Vol. 14, N 19. P. 4017. doi: 10.3390/polym14194017 |
| [31] |
Juj Ja, Rogovaja OS, Andreev AJu, Ibragimova RR. Algoritm vydelenija limbal’nyh stvolovyh kletok iz bioptata u jeksperimental’nyh zhivotnyh. Rossijskij obshhenacional’nyj oftal’mologicheskij forum. 2022;(2):462–465. (In Russ). |
| [32] |
Юй Я., Роговая О.С., Андреев А.Ю., Ибрагимова Р.Р. Алгоритм выделения лимбальных стволовых клеток из биоптата у экспериментальных животных // Российский общенациональный офтальмологический форум. 2022. № 2. С. 462–465. |
| [33] |
Di Iorio E, Barbaro V, Ruzza A, et al. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci U S A. 2005;102(27):9523–9528. doi: 10.1073/pnas.0503437102 |
| [34] |
Di Iorio E., Barbaro V., Ruzza A., et al. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration // Proc Natl Acad Sci U S A. 2005. Vol. 102, N 27. P. 9523–9528. doi: 10.1073/pnas.0503437102 |
| [35] |
Kao WW. Keratin expression by corneal and limbal stem cells during development. Exp Eye Res. 2020;200:108206. doi: 10.1016/j.exer.2020.108206 |
| [36] |
Kao W.W. Keratin expression by corneal and limbal stem cells during development // Exp Eye Res. 2020. Vol. 200. P. 108206. doi: 10.1016/j.exer.2020.108206 |
| [37] |
Shortt AJ, Secker GA, Notara MD, et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol. 2007;52(5):483–502. doi: 10.1016/j.survophthal.2007.06.013 |
| [38] |
Shortt A.J., Secker G.A., Notara M.D., et al. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results // Surv Ophthalmol. 2007. Vol. 52, N 5. P. 483–502. doi: 10.1016/j.survophthal.2007.06.013 |
| [39] |
Zhang X, Sun H, Tang X, et al. Comparison of cell-suspension and explant culture of rabbit limbal epithelial cells. Exp Eye Res. 2005;80(2):227–233. doi: 10.1016/j.exer.2004.09.005 |
| [40] |
Zhang X., Sun H., Tang X., et al. Comparison of cell-suspension and explant culture of rabbit limbal epithelial cells // Exp Eye Res. 2005. Vol. 80, N 2. P. 227–233. doi: 10.1016/j.exer.2004.09.005 |
Yu Y., Andreev A.Y., Rogovaya O.S., Subbot A.M., Vorotelyak E.A., Osidak E.O., Ibragimova R.R.
/
| 〈 |
|
〉 |