The morphology and chemistry of a rat spinal cord after thoracal segmentectomy and transplantation of polymeric collagen neuromatrix “Spherogel - E”™ containing incorporated ensheathing neuroepithelial cells

I. S. Bryukhovetsky , I. V. Dyuizen , P. A. Motavkin

Genes & Cells ›› 2008, Vol. 3 ›› Issue (2) : 57 -62.

PDF
Genes & Cells ›› 2008, Vol. 3 ›› Issue (2) : 57 -62. DOI: 10.23868/gc159090
Original Study Articles
research-article

The morphology and chemistry of a rat spinal cord after thoracal segmentectomy and transplantation of polymeric collagen neuromatrix “Spherogel - E”™ containing incorporated ensheathing neuroepithelial cells

Author information +
History +
PDF

Abstract

Using classical histological methods and immunocytochemical reaction on GAP43 and NFSOO we studied the process of tissue reorganizations and neurochimical changes accompanying the scar formation in rat spinal cord after thoracal segmentectomy and subsequenttransplantation of olfactory ensheathing cells, incorporated in neuromatrix «Sperogel». In spinal cord of control rats formation on gliomesodermal capsulus was the result of classical histoproliferative reaction. The morphology of scar tissue in experimental rats differed markedly from control group, its formations began at early stages and were associated with proliferation of both connective tissue and astrocites, and macrophages infiltration. As result the new tissue included a lot of capillaries and bundles of nerve fibers with GAP43 and NF-300 immunopositivity. We conclude that the better tissue repair, their revascularization and nerve regeneration, were the result of two main factors: 1 - modulating role of neuromatrix; 2 - metabolic and neurotrophic activity of trasplantated olfactory ensheathing cells.

Keywords

spinal cord / ensheathing neuroepithelial cells / segmentectomy / scar / immunohistochemical study

Cite this article

Download citation ▾
I. S. Bryukhovetsky, I. V. Dyuizen, P. A. Motavkin. The morphology and chemistry of a rat spinal cord after thoracal segmentectomy and transplantation of polymeric collagen neuromatrix “Spherogel - E”™ containing incorporated ensheathing neuroepithelial cells. Genes & Cells, 2008, 3(2): 57-62 DOI:10.23868/gc159090

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Берсенев А.В. Аутотрансплантация обкладочных клеток обонятельного анализатора для лечения травмы спинного мозга - австралийское исследование. Клеточная трансплантология и тканевая инженерия 2005; 1: 13-4.

[2]

McDonald J.W., LiuX.Z., Qu Y. atal.Transplanted embryonic stem cells survive, differentiate, and promote recovery in injured rat spinal cord. Nat. Med. 1999; 5(12): 1410-2.

[3]

Мотавкин П.А., Пиголкин Ю.И., Каминский Ю.В. Гистофизиология кровообращения в спинном мозге. М.: Наука, 1994.

[4]

Зяблов В.И. Проблемные вопросы регенерации нервной системы. Симферополь, 1986.

[5]

Stichel С.С., Muller Н.М. Experimental strategies to promote axonal regeneration after traumatic central nervous system injury. Prog. Neurobiol. 1998; 56:119-48

[6]

Vacanti C.A. Tissue-engineered spinal cord. Transplant. Proc. 2001; 33(1-2): 592-8.

[7]

Woerly S., Pinet E., De Robertis L, Bousmina M. et al. Heterogeneous PHPMA Hydrogels for Tissue Repair end Axonal Regeneration in the Injured Spinal Cord. J. Biomater. Soi. Polymer Edn. 1998; 9(7): 681-711.

[8]

Raisman G. A promising therapeutic approach to spinal cord repair. J. R. Soo. Med. 2003; 96(6): 259-61.

[9]

Bamber N.I., Li H., Aebischer P., Xu X.M. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords. Neural Plas. 1999; 6(4): 103-21.

[10]

Chen X., Fang H., Schwob J. Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J. Comp. Neurol. 2004; 469(4): 457-74.

[11]

Брюховецкий A.C. Трансплантация нервных клеток и тканевая инженерия мозга при нервных болезнях. М.: ЗАО “Клиника восстановительной интервенционной неврологии и терапии “НейроВита”, 2003.

[12]

Carter L.A., MacDonald J.L., Roskams A.J. et al. Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J. Neurosci. 2004; 24(25): 5670-83.

[13]

Zhang X., Klueber K.M., Guo Z. et al. Aduilt human olfactory neural progenitors cultured in defined media. Exp. Neural. 2004; 186(2): 112-23.

[14]

Рогознюк Ю.Д. Морфология спинномозгового рубца при различных способах соединения концов спинного мозга после его перерезки в эксперименте. Афтореф. дис... канд. мед. наук. Симферополь 1983.

[15]

Ярыгин В.Н., Банин В.В., Ярыгин К.Н., Брюховецкий А.С. Регенерация спинного мозга крыс после торакальной сегментэктомиии: рост и восстановление нервных проводников. Морфология 2006; 1(129); 30-43.

[16]

Richter W.M., Fletcher Р.А., Liu J., Tetzlaff W., Roskams A.J. Lamina propria and olfactory bulb ensheathing cells exhibit differential integration and migration and promote differential axon sprouting in the lesioned spinal cord. J. Neurosci. 2005; 25(46): 10700-11.

[17]

Chen X., Fang H., Schwob J. Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J. Comp. Neurol. 2004; 469(4): 457-74.

[18]

Bianco J.I., Perry C., Harkin D.G. et al. Neurotrophin 3 Promotes Purification and Proliferation of Olfactory Ensheathing Cells From Human Nose. Glia 2004; 45(2): 111-23.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/