Molecular control of pluripotency
A. S. Grigorian , P. V. Kruglyakov
Genes & Cells ›› 2008, Vol. 3 ›› Issue (2) : 38 -44.
Molecular control of pluripotency
Self-renewal capacity and pluripotency are the unigue features of embryonic stem cells [ESCs], that possess a prominent potential in the field of regenerative medicine. There are growing amount of data describing cell identity within inner cell mass of blastocyst in vivo and within ESCs population in vitro. Molecular mechanisms that are responsible for cells commitment and differentiation into specialized cell types are intensively studied. The aim of this review is to summarize the existing data about genetic and epigenetic mechanisms of mammalian embryonic stem cell self-renewal and pluripotency maintenance.
embryonic stem cells / inner cell mass / self-renewal / pluripotency / Nanog / Oct4 / Sox2
| [1] |
Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 2005; 19:1129-55. |
| [2] |
Blum B., Benvenisty N. Clonal Analysis of Human Embryonic Stem Cell Differentiation into Teratomas. Stem Cells 2007; 25:1924-30. |
| [3] |
de la Serna I.L., Ohkawa Y., Imbalzano A.N. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat. Rev. Genet. 2006; 7:461-73. |
| [4] |
Lin W., Dent S.Y. Functions of histone-modifying enzymes in development. Curr. Opin. Genet. Dev. 2006; 16:137-42. |
| [5] |
Smith A.G. Embryo-derived stem cells: of mice and men. Ann. Rev. Cell. Dev. Biol. 2001;17:435-62. |
| [6] |
Chambers I., Yates A. The homeodomain protein Nanog and pluripotency in mouse embryonic stem cells. Biochemical society transactions 2005; 33: 1518-21. |
| [7] |
Loh Y.H., Wu Q., Chew J.-L. et al. The 0ct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics 2005; 38:431-40. |
| [8] |
Pan G., Lin J., Zhou Y. et al. A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. The FASEB J. 2006; 20: 1094-02. |
| [9] |
Nichols J., Zevnik B., Anastassiadis K. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998;95:379-91. |
| [10] |
Niwa H., Miyazaki J., Smith A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or selfrenewal of ES cells. Nat. Genet. 2000; 24: 372-6. |
| [11] |
Rodriguez R.T., Velkey J.M., Lutzko C. et al. Manipulation of OCT4 levels in human embryonic stem cells results in induction of differential cell types. Experimental Bio. Med. 2007; 232:1368-80. |
| [12] |
Avery S., Inniss K., Moore H. The regulation of self-renewal in human embryonic stem cells. Stem Cells and Dev. 2006; 15: 729-40. |
| [13] |
Boiani M., Schöler H.R. Regulatory networks in embryo-derived pluripotent stem cells. Nat. Rev. Mol. Cell. Biol. 2005; 6: 872-84. |
| [14] |
Chambers I., Colby D., Robertson M. et al. Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell 2003; 113: 643-55. |
| [15] |
Mitsui K., Tokuzawa Y., Itoh H. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631-42. |
| [16] |
Chambers I., Silva J., Colby D. et al. Nanog safeguards pluripotency and mediates germline development. Nature 2007; 450:1230-5. |
| [17] |
Hough S.R., Clements I., Welch P.J., Wiederholt K.A. Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells 2006; 24:1467-5. |
| [18] |
Kehler J., Tolkunova E., Koschorz B. et al. 0ct4 is required for primordial germ cell survival. EMBO reports 2004; 5:1078-83. |
| [19] |
Niwa H., Toyooka Y., Shimosato D. et al. Interaction between 0ct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005; 123: 917-29. |
| [20] |
Strumpf D., Мао C.A., Yamanaka Y. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Dev. 2005; 132: 2093-102. |
| [21] |
Hyslop L, Stojkovic M., Armstrong L. et al. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells 2005; 23:1035-43. |
| [22] |
Fujikura J., Yamato E., Yonemura S. et al. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 2002; 16: 784-9. |
| [23] |
Capo-Chichi C.D., Rula M.E., Smedberg J.L. et al. Perception of differentiation cues byGATAfactors in primitive endoderm lineage determination of mouse embryonic stem cells. Dev. Biol. 2005; 286: 574-86. |
| [24] |
Singh A.M., Hamazaki T., Hankowski K.E., Terada N. A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 2007; 25: 2534-42. |
| [25] |
Boyer L.A., Lee T.I., Cole M.F. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947-56. |
| [26] |
Boyer L.A., Mathur D., Jaenisch R. Molecular control of pluripotency. Current Opinion in Genetics & Dev. 2006; 16: 455-62. |
| [27] |
Humphrey R.K., Beattie G.M., Lopez A.D. et al. Maintenance of Pluripotency in Human Embryonic Stem Cells is Stat3 independent. Stem Cells 2004; 22: 522-30. |
| [28] |
Niwa H. How is pluripotency determined and maintained? Dev. 2007; 134: 635-46. |
| [29] |
Meshorer E., Yellajoshula D., George E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells.Dev. Cell 2006; 10:105-16. |
| [30] |
Levings P.P., Zhou Z., Vieira K.F. et al. Recruitment of transcription complexes to the b—globin locus control region and transcription of hypersensitive site 3 prior to erythroid differentiation of murine embryonic stem cells. FEBS J. 2006; 273: 746-55. |
| [31] |
Szutorisz H., Canzonetta C., Georgiou A. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking atthe embryonic stem cell stage. Mol. Cell. Biol. 2005; 25:1804-20. |
| [32] |
Azuara V., Perry P., Sauer S. et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol. 2006; 8: 532-8. |
| [33] |
Bernstein B.E., Mikkelsen T.S., Xie X. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315-26. |
| [34] |
Boyer L.A., Plath K., Zeitlinger J. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441: 349-53. |
| [35] |
Lee T.I., Jenner R.G., Boyer L.A. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006; 125: 301-13. |
| [36] |
Spivakov M., Fisher A.G. Epigenetic signatures of stem-cell identity. Nat. Rev. Genet. 2007; 8(4): 263-71. |
| [37] |
Levine S.S., Weiss A., Erdjument-Bromage H. et al. The core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell Biol. 2002; 22: 6070-8. |
| [38] |
Voncken J.W., Roelen B.A., Roefs M. et al. Rnf2 (Ringlb) deficiency causes gastrulation arrest and cell cycle inhibition. Proc. Natl. Acad. Sei. USA 2003; 100: 2468-73. |
| [39] |
Pasini D., Bracken A.P., Jensen M.R. et al. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004; 23:4061-71. |
| [40] |
O'Carroll D., Erhardt S., Pagani M. et al. The Polycomb-group gene Ezh2 is required for early mouse development. Mol. Cell Biol. 2001; 21: 4330-6. |
| [41] |
Shumacher A., Faust C., Magnuson T. Positional cloning of a global regulator of anterior-posterior patterning in mice. Nature 1996; 383: 250-3. |
| [42] |
Molofsky A.V., Pardal R., Iwashita T. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003; 425: 962-7. |
| [43] |
Park I.K., Qian D., Kiel M. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302-5. |
| [44] |
Tolhuis B., Muijrers I., de Wit E. et al. Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in Drosophila melanogaster. Nat. Genet. 2006; 38:694-9. |
| [45] |
Schwartz Y.B., Kahn T.G., Nix D.A. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 2006; 38: 700-5. |
| [46] |
Arney K.L., Bao S., Bannister A.J. et al. Histone methylation defines epigenetic asymmetry in the mouse zygote. Int. J. Dev. Biol. 2002; 46: 317-20. |
| [47] |
Santos F., Hendrich B., Reik W., Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 2002; 241:172-82. |
| [48] |
Beaujean N.. Hartshorne G., Cavilla J. Non-conservation of mammalian preimplantation methylation dynamics. Curr. Biol. 2004; 14: R266-67. |
| [49] |
Santos F., Hendrich B., Reik W., Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 2002; 41:172-82. |
| [50] |
Allegrucci C., Denning C., Priddle H., Young L. Stem-cell consequences of embryo epigenetic defects. Lancet 2004; 364: 206-8. |
| [51] |
Santos F., Dean W. Epigenetic reprogramming during early development in mammals. Reproduction 2004; 127: 643-51. |
| [52] |
Bestor Т.Н. The DNA methyltransferases of mammals. Hum. Molec. Genet. 2000; 9: 2395-502. |
| [53] |
Dean W., Bowden L, Aitchison A. Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses. Dev. 1998; 125:2273-82. |
| [54] |
Ansel K.M., Lee D.U., Rao A. An epigenetic view of helper T cell differentiation. Nature Immunol. 2003; 4: 616-23. |
| [55] |
Frostesjo L, Holm I., Grahn B. et al. Interference with DNA methyltransferase activity and genome methylation during F9 teratocarcinoma stem cell differentiation induced by polyamine depletion. J. Biol. Chem. 1997; 272:4359-66. |
| [56] |
Maatouk D.M., Resnick J.L. Continuing primordial germ cell differentiation in the mouse embryo is a cell-intrinsic program sensitive to DNA methylation. Dev. Biol. 2003; 258: 201-8. |
| [57] |
Xu C., Police S., Rao N.. Carpenter M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 2002; 91: 501-8. |
| [58] |
Szyf M. DNA methylation and cancer therapy. Drug Resist. Update 2003; 6: 341-53. |
Eco-Vector
/
| 〈 |
|
〉 |