Gene and stem-cell therapy for neurodegenerative diseases

R. R. Islamov , А. А. Rizvanov , D. S. Guseva , A. P. Kiasov

Genes & Cells ›› 2007, Vol. 2 ›› Issue (3) : 29 -37.

PDF
Genes & Cells ›› 2007, Vol. 2 ›› Issue (3) : 29 -37. DOI: 10.23868/gc122372
Reviews
review-article

Gene and stem-cell therapy for neurodegenerative diseases

Author information +
History +
PDF

Abstract

Currently there are no available effective therapies for treating neurodegenerative diseases. In animal models, the loss of neurons, caused by mutations in known genes, can be alleviated by genetically modifying target cells to increase their regeneration and viability, or by replacing dead neurons with new healthy neural cells by neurotransplantation of stem or progenitor cells, differentiated in neural pathway. Here we summarized results for gene therapy using antisense oligonucleotides, siRNA, and viral vectors. Critically reviewed advantages and disadvantages of neurotransplantation of embryonic and different adult stem cells. To date we found no reports of using genetically modified stem cells from umbilical cord blood for cell therapy of neurodegenerative diseases. We state a hypothesis, that stem cells from umbilical cord blood, genetically modified by transfection with plasmid vector, simultaneously expressing neural cell adhesion molecule L1 and vascular endothelial growth factor [VEGF), could have a significantly enhanced therapeutic effect in transgenic mice G93A, which serve as animal model for amyotrophic lateral sclerosis [ALS).

Keywords

neurodegenerative diseases / stem cells / cell therapy / gene therapy

Cite this article

Download citation ▾
R. R. Islamov, А. А. Rizvanov, D. S. Guseva, A. P. Kiasov. Gene and stem-cell therapy for neurodegenerative diseases. Genes & Cells, 2007, 2(3): 29-37 DOI:10.23868/gc122372

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cajal S.R. Histologie du Systeme nerveux de l’homme et des vertebres. 1909-1911. Translated as «Histology of the nervous system of man and vertebrates» by Swanson N. and Swanson L.W. New York, Maloine, Paris: Oxford University Press; 1995.

[2]

Cajal S.R. Degeneration and Regeneration of the Nervous System. New York: Hafner; 1928.

[3]

Jankowsky J.L., Slunt H.H., Gonzales V. et al. Persistent amyloidosis following suppression of Abeta production in a transgenic model of Alzheimer disease. PLoS Med. 2005; 2(12): e355.

[4]

Jankowsky J.L., Fadale D.J., Anderson J. et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 2004; 13(2): 159-70.

[5]

Giasson B.I., Duda J.E., Quinn S.M. et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 2002; 34(4): 521-33.

[6]

Gurney M.E., Pu H., Chiu A.Y. et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 1994; 264(5166): 1772-5.

[7]

Mangiarini L., Sathasivam K., Seller M. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 1996; 87(3): 493-506.

[8]

Monani U.R., Sendtner M., Coovert D.D. et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(-/-) mice and results in a mouse with spinal muscular atrophy. Hum. Mol. Genet. 2000; 9(3): 333-9.

[9]

Smith R.A., Miller T.M., Yamanaka K. et al. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 2006; 116(8): 2290-6.

[10]

Xia H., Mao Q., Eliason S.L. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 2004; 10(8): 816-20.

[11]

Saito Y., Yokota T.,Mitani T. et al. Transgenic small interfering RNA halts amyotrophic lateral sclerosis in a mouse model. J. Biol. Chem. 2005; 280(52): 42826-30.

[12]

Ralph G.S., Radcliffe P.A., Day D.M. et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat. Med. 2005; 11(4): 429-33.

[13]

Raoul C., Abbas-Terki T., Bensadoun J.C. et al. Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat. Med. 2005; 11 (4): 423-8.

[14]

Karagiannis T.C., El-Osta A. RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Ther. 2005; 12(10): 787-95.

[15]

Tolentino M.J., Brucker A.J., Fosnot J. et al. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina 2004; 24(4): 660.

[16]

Murashov A.K., Chintalgattu V., Islamov R.R. et al. RNAi pathway is functional in peripheral nerve axons. Faseb. J. 2007; 21(3): 656-70.

[17]

Kaspar B.K., Llado J., Sherkat N. et al. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 2003; 301(5634): 839-42.

[18]

St George J.A. Gene therapy progress and prospects: adenoviral vectors. Gene Ther. 2003.; 10(14): 1135-41.

[19]

Schagen F.H., Ossevoort M., Toes R.E., Hoeben R.C. Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit. Rev. Oncol. Hematol. 2004; 50(1): 51-70.

[20]

Ende N., Weinstein F., Chen R., Ende M. Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sci. 2000; 67(1): 53-9.

[21]

Boulis N.M., Turner D.E., Imperiale M.J., Feldman E.L. Neuronal survival following remote adenovirus gene delivery. J. Neurosurg. 2002; 96(2) Suppl.: 212-9.

[22]

Baumgartner B.J., Shine H.D. Targeted transduction of CNS neurons with adenoviral vectors carrying neurotrophic factor genes confers neuroprotection that exceeds the transduced population. J. Neurosci. 1997; 17(17): 6504-11.

[23]

Manabe Y., Nagano I., Gazi M.S. et al. Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Apoptosis 2002; 7(4): 329-34.

[24]

Miagkov A., Turchan J., Nath A., Drachman D.B. Gene transfer of baculoviral p35 by adenoviral vector protects human cerebral neurons from apoptosis. DNA Cell Biol. 2004; 23(8): 496-501.

[25]

Naldini L., Blomer U., Gallay P. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996. Vol. 272. N. 5259. P. 263-7.

[26]

Mandel R.J., Manfredsson F.P., Foust K.D. et al. Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol. Ther. 2006; 13(3): 463-83.

[27]

Muzyczka N., Berns K. I. In Howley P.M., editors. Parvoviridae: the viruses and their replication. Fields Virology Lippincott. New York: Williams & Wilkins; 2001: 2327-60.

[28]

Burger C., Nash K., Mandel R.J. Recombinant adeno-associated viral vectors in the nervous system.Hum. Ge ne Ther. 2005; 16(7): 781-91.

[29]

McCown T.J. Adeno-associated virus (AAV) vectors in the CNS. Curr. Gene Ther. 2005; 5(3): 333-8.

[30]

Glorioso J.C., Fink D.J. Herpes vector-mediated gene transfer in treatment of diseases of the nervous system. An. Rev. Microbiol. 2004; 58(P): 253-71.

[31]

Latchman D.S. Herpes simplex virus-based vectors for the treatment of cancer and neurodegenerative disease. Curr. Opin. Mol. Ther. 2005; 7(5): 415-8.

[32]

Naldini L., Blomer U., Gallay P. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272(5259): 263-7.

[33]

Ralph G.S., Binley K., Wong L.F. et al. Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clin. Sci. (Lond). 2006; 110(1): 37-46.

[34]

Azzouz M., Ralph G.S., Storkebaum E. et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 2004; 429(6990): 413-7.

[35]

Dawbarn D., Allen S.J. Neurotrophins and neurodegeneration. Neuropathol. Appl. Neurobiol. 2003; 29(3): 211-30.

[36]

Zuccato C., Ciammola A., Rigamonti D. et al. Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 2001; 293(5529): 493-8.

[37]

Liew C.G., Draper J.S., Walsh J. et al. Transient and stable transgene expression in human embryonic stem cells. Stem Cells 2007; 25(6): 1521-8.

[38]

Kerr D.A., Llado J., Shamblott M.J. et al. Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J. Neurosci. 2003; 23(12): 5131-40.

[39]

Bjorklund L.M., Sanchez-Pernaute R., Chung S. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 2002; 99(4): 2344-9.

[40]

Lindvall O., Sawle G., Widner H. et al. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann. Neurol. 1994; 35(2): 172-80.

[41]

Zhang S.C., Wernig M., Duncan I.D. et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 2001; 19(12): 1129-33.

[42]

Hendricks W.A., Pak E.S., Owensby J.P. et al. Predifferentiated embryonic stem cells prevent chronic pain behaviors and restore sensory function following spinal cord injury in mice. Mol. Med. 2006; 12(1 -3): 34-46.

[43]

Correia A.S., Anisimov S.V., Li J.Y., Brundin P. Ann. Med. 2005; 37(7): 487-98.

[44]

Notice of extended receipt date and supplemental information guidance for applications requesting funding that proposes research with human embryonic. STEM CELLS. http://grants.nih.gov/grants/guide/notice-files/NOT-OD-02- 006.html.

[45]

Jiang Y., Jahagirdar B.N., Reinhardt R.L. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893): 41 -9.

[46]

Mezey E., Chandross K.J. Bone marrow: a possible alternative source of cells in the adult nervous system. Eur. J. Pharmacol. 2000; 405(1-3): 297-302.

[47]

Azizi S.A., Stokes D., Augelli B.J. et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc. Natl. Acad. Sci. USA 1998; 95(7): 3908-13.

[48]

Dezawa M. Insights into autotransplantation: the unexpected discovery of specific induction systems in bone marrow stromal cells. Cell Mol. Life Sci. 2006; 63(23): 2764-72.

[49]

Schwarz E.J., Alexander G.M., Prockop D.J., Azizi S.A. Multipotential marrow stromal cells transduced to produce L-DOPA: engraftment in a rat model of Parkinson disease. Hum. Gene Ther. 1999; 10(15): 2539-49.

[50]

Lu L., Zhao C., Liu Y. et al. Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinson’s disease. Brain Res. Brain Res. Protoc. 2005; 15(1): 46-51.

[51]

Brazelton T.R., Rossi F.M., Keshet G.I., Blau H.M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000; 290(5497): 1775-9.

[52]

Mazzini L., Fagioli F., Boccaletti R. et al. Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral. Scler. Other Motor Neuron Disord. 2003; 4(3): 158-61.

[53]

Mezey E., Chandross K.J., Harta G. et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290(5497): 1779-82.

[54]

Hao H.N., Zhao J., Thomas R.L. et al. Fetal human hematopoietic stem cells can differentiate sequentially into neural stem cells and then astrocytes in vitro. J. Hematother. Stem Cell Res. 2003; 12(1): 23-32.

[55]

Munoz-Elias G., Woodbury D., Black I.B. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 2003; 21(4): 437-48.

[56]

Chen R., Ende N. The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J. Med. 2000; 31(1-2): 21-30.

[57]

Ende N., Weinstein F., Chen R., Ende M. Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis). Life Sci. 2000; 67(1): 53-9.

[58]

Garbuzova-Davis S., Willing A.E., Zigova T. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J. Hematother. Stem Cell Res. 2003; 12(3): 255-70.

[59]

Chen J., Sanberg P.R., Li Y. et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001; 32(11): 2682-8.

[60]

Neering S.J., Hardy S.F., Minamoto D. et al. Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors. Blood 1996; 88(4): 1147-55.

[61]

Brun A.C., Fan X., Bjornsson J.M. et al. Enforced adenoviral vector- mediated expression of HOXB4 in human umbilical cord blood CD34+ cells promotes myeloid differentiation but not proliferation. Mol. Ther. 2003; 8(4): 618-28.

[62]

Gentry T., Smith C. Retroviral vector-mediated gene transfer into umbilical cord blood CD34brCD38-CD33- cells. Exp. Hematol. 1999; 27(8): 1244-54.

[63]

Evans J.T., Kelly P.F., O’Neill E., Garcia J.V. Human cord blood CD34+CD38- cell transduction via lentivirus-based gene transfer vectors. Hum. Gene Ther. 1999; 10(9): 1479-89.

[64]

Szyda A., Paprocka M., Krawczenko A. et al. Optimization of a retroviral vector for transduction of human CD34 positive cells. Acta Biochim. Pol. 2006; 53(4): 815-23.

[65]

Shin J.Y., Suh D., Kim J.M. et al. Low molecular weight polyethylenimine for efficient transfection of human hematopoietic and umbilical cord blood-derived CD34+ cells. Biochim. Biophys. Acta. 2005; 1725(3): 377-84.

[66]

von Levetzow G., Spanholtz J., Beckmann J. et al. Nucleofection, an efficient nonviral method to transfer genes into human hematopoietic stem and progenitor cells. Stem Cells Dev. 2006; 15(2): 278-85.

[67]

Oldak T., Kruszewski M., Machaj E.K. et al. Optimisation of transfection conditions of CD34+ hematopoietic cells derived from human umbilical cord blood. Acta Biochim. Pol. 2002; 49(3): 625-32.

[68]

Jurga M., Markiewicz I., Sarnowska A. et al. Neurogenic potential of human umbilical cord blood: neural-like stem cells depend on previous long-term culture conditions. J. Neurosci. Res. 2006; 83(4): 627-37.

[69]

Chen J., Bernreuther C., Dihne M., Schachner M. Cell adhesion molecule l1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury. J. Neurotrauma 2005; 22(8): 896-906.

[70]

Bernreuther C., Dihne M., Johann V. et al. Neural cell adhesion molecule L1-transfected embryonic stem cells promote functional recovery after excitotoxic lesion of the mouse striatum. J. Neurosci. 2006; 26(45): 11532-9.

[71]

Ikeda Y., Fukuda N., Wada M. et al. Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens. Res. 2004; 27(2): 119-28.

[72]

Chen H.K., Hung H.F., Shyu K.G. et al. Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur. J. Clin. Invest. 2005; 35(11 ): 677-86.

[73]

Islamov R.R., Chintalgattu V., Pak E.S. et al. Induction of VEGF and its Flt-1 receptor after sciatic nerve crush injury. Neuroreport. 2004; 15(13): 2117-21.

[74]

Facchiano F., Fernandez E., Mancarella S. et al. Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J. Neurosurg. 2002; 97(1): 161-8.

[75]

Silani V., Leigh N. Stem therapy for ALS: hope and reality. Amyotroph. Lateral Scler. Other. Motor Neuron Disord. 2003; 4(1): 8-10.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/