Influence of recombinant histone H1.3 on the efficiency of lentiviral transduction of human cells in vitro
V V Solovyeva , A A Isaev , D D Genkin , A A Rizvanov
Genes & Cells ›› 2012, Vol. 7 ›› Issue (3) : 151 -154.
Influence of recombinant histone H1.3 on the efficiency of lentiviral transduction of human cells in vitro
Lentiviral vectors are widely used in genetic modificationof human and animal cells (lentiviral transduction) to enhancetheir therapeutic potential by expression of recombinantprotective and trophic factors. Genetic modification of cells invitro or ex vivo achieves the specificity of viral transduction,as modified are just cells that have been manipulated inthe laboratory. In addition, the introduction of geneticallymodified cells, but not pure virus, helps to avoid introductionof viral particles into the body of the recipient. This approachallows us to control the expression of therapeutic genes, theimmunogenicity of viral vectors and viral transduction. Todate, different approaches are used to improve the lentiviraltransduction (polycations, protamine sulfate, etc.), but thesemethods suffer from limited efficacy or high toxicity. For thefirst time we demonstrated that the recombinant histoneN1.3 increases the efficiency of lentiviral transduction bymore than 2 times and has no toxic effect on target cells ina wide range of concentrations studied.
histone H1.3 / lentiviruses / retroviruses / transduction / cytotoxicity
| [1] |
Seroogy C.M., Fathman C.G. The application of gene therapy in autoimmune diseases. Gene Ther. 2000; 7(1): 9-13. |
| [2] |
Kohn D.B., Bauer G., Rice C.R. et al., A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children. Blood 1999; 94(1): 368-71. |
| [3] |
Nemunaitis J., Fong T., Robbins J.M. et al. Phase I trial of interferon-gamma (IFN-gamma) retroviral vector administered intratumorally to patients with metastatic melanoma. Cancer GeneTher. 1999; 6(4): 322-30. |
| [4] |
Shand N., Weber F., Mariani L. et al. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European-Canadian Study Group. Hum. Gene Ther. 1999; 10(14): 2325-35. |
| [5] |
Duc-Nguyen H., Enhancing effect of diethylaminoethyl-dextran on the focus-forming titer of a murine sarcoma virus (Harvey strain). |
| [6] |
J. Virol. 1968; ([6): 643-4. |
| [7] |
Manning J.S., Hackett A.J., Darby N.B. Effect of polycations on sensitivity of BALD-3T3 cells to murine leukemia and sarcoma virus infectivity. Appl. Microbiol. 1971; 22(6): 1162-3. |
| [8] |
Cornetta K., Anderson W.F. Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: implications for human gene therapy. J. Virol. Methods. 1989; 23(2): 187-94. |
| [9] |
Zaitsev S., Buchwalow I., Haberland A. et al. Histone H1- mediated transfection: role of calcium in the cellular uptake and intracellular fate of H1-DNA complexes. Acta Histochem. 2002; 104(1): 85-92. |
| [10] |
Budker V., Hagstrom J.E., Lapina O. et al. Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques 1997; 23(1): 139: 142-7. |
| [11] |
Fritz J.D., Herweijer H., Zhang G. et al. Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum. Gene Ther. 1996; 7(12): 1395-404. |
| [12] |
Haberland A., Knaus T., Zaitsev S.V. et al. Histone H1-mediated transfection: serum inhibition can be overcome by Ca2+ ions. Pharm. Res. 2000; 17(2): 229-35. |
| [13] |
Lucius H., Haberland A., Zaitsev S. et al. Structure of transfection-active histone H1/DNA complexes. Mol. Biol. Rep. 2001; 28(3): 157-65. |
| [14] |
Zaitsev S.V., Haberland A., Otto A. et al. H1 and HMG17 extracted from calf thymus nuclei are efficient DNA carriers in gene transfer. Gene Ther. 1997; 4(6): 586-92. |
| [15] |
Demirhan I., Hasselmayer O., Chandra A. et al., Histonemediated transfer and expression of the HIV-1 tat gene in Jurkat cells. |
| [16] |
J. Hum. Virol. 1998; 1(7): 430-40. |
| [17] |
Bottger M., Zaitsev S.V., Otto A. et al., Acid nuclear extracts as mediators of gene transfer and expression. Biochim. Biophys. Acta. 1998; 1395(1): 78-87. |
| [18] |
Puebla I., Esseghir S., Mortlock A. et al. A recombinant H1 histone-based system for efficient delivery of nucleic acids. J. Biotechnol. 2003; 105(3): 215-26. |
| [19] |
Соловьева В.В., Ризванов А.А. Перенос рекомбинантных нуклеиновых кислот в клетки (трансфекция) с помощью гистонов и других ядерных белков. Клеточная трансплантология и тканевая инженерия 2011; 6(3): 29-40. |
| [20] |
Cory A.H., Owen T.C., Barltrop J.A. et al. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991; 3(7): 207-12. |
| [21] |
Barltrop J.A., Owen T.C. 5-(3-carboxymethoxyphenyl)-2-(4,5- dimethylthiazoly)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cellviability indicators. Bioorg. Med. Chem. Lett. 1991; 1: 611-4. |
| [22] |
Pear W.S., Nolan G.P., Scott M.L. et al. Production of hightiter helper-free retroviruses by transient transfection. PNAS USA 1993; 90(18): 8392-6. |
Eco-Vector
/
| 〈 |
|
〉 |