Survival and differentiation of endogenous Schwann cells migrating into spinal cordunder the influence of neurotrophic factors
Y O Mukhamedshina , G F Shaymardanova , A R Muhitov , I I Salafutdinov , V N Zarubina , А А Rizvanov , Yu A Chelyshev
Genes & Cells ›› 2012, Vol. 7 ›› Issue (3) : 125 -129.
Survival and differentiation of endogenous Schwann cells migrating into spinal cordunder the influence of neurotrophic factors
Schwann cells are a major figure in the process ofregeneration in the peripheral nervous system. They migrateinto the injury region of spinal cord, which are involved inremyelination and are regarded as the source of numerousmolecular signals that could potentially support the growthof axons in the central nervous system. In the present workwe describe the behavior of migrating into the injury dosedregion spinal cord Schwann cells under the influence ofneurotrophic factors - vascular endothelial growth factor(VEGF) and fibroblast growth factor 2 (FGF2), deliveredby direct introduction of «naked» plasmid DNA and bytransplantation of genetically modified human umbilical cordblood mononuclear cells.Using immunohistochemical detection of markers of S100,GFAP, Krox20 and HSP25 identified different phenotypesof migrating into the spinal cord of endogenous Schwanncells. Found that greatest influence on their numbers in theinjury region provides local delivery of genes vegf and fgf2by human umbilical cord blood mononuclear cells. However,the direct introduction of the same plasmid may also bepromising in the case of synthetic platforms that enhanceits transfection activity.
vegf / fgf2 / spinal cord injury / Schwann cells / umbilical cord blood cells / plasmid / vegf / fgf2
| [1] |
Челышев Ю.А., Викторов И.В. Клеточные технологии ремие- линизации при травме спинного мозга. Неврологический вестник 2009; 41(1): 49-55. |
| [2] |
Frostick S.P., Yin Q., Kemp G.J. Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 1998; 18(7): 397-405. |
| [3] |
Boyd J.G., Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol. Neurobiol. 2003; 27(3): 277-324. 4. Höke A., Mi R. In search of novel treatments for peripheral neuropathies and nerve regeneration. Discov. Med. 2007; 7(39): 109-12. |
| [4] |
Jasmin L., Janni G., Moallem T.M. et al. Schwann cells are removed from the spinal cord after effecting recovery from paraplegia. |
| [5] |
J. Neurosci. 2000; 20(24): 9215-23. |
| [6] |
Шаймарданова Г.Ф., Мухамедшина Я.О., Архипова С.С. и др. Экспрессия молекулярных детерминант шванновских клеток и пе- риферического миелина в спинном мозге крысы при контузионной травме. Морфологические ведомости 2011; 6: 73-7. |
| [7] |
Cao L., Zhu Y.L., Su Z. et al. Olfactory ensheathing cells promote migration of Schwann cells by secreted nerve growth factor. Glia 2007; 55(9): 897-904. |
| [8] |
Hill C.E., Moon L.D., Wood P.M. Labeled Schwann cell transplantation: cell loss, host Schwann cell replacement, and strategies to enhance survival. Glia 2006; 53(3): 338-43. |
| [9] |
Rizvanov A.A., Guseva D.S., Salafutdinov I.I. et al. Genetically modified human umbilical cord blood cells expressing VEGF and FGF2 differentiate into glial cells after transplantation into amyotrophic lateral sclerosis (ALS) transgenic mice. Exper. Biol. Med. 2011; 236(1): 91-8. |
| [10] |
Haninec P., Kaiser R., Bobek V. et al. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF) gene therapy. BMC Neuroscience. In press 2012. |
| [11] |
Shen B., Pei F.X., Chen J. et al. Effect of controlled release microspheres incorporating bFGF on Schwann cells. Sichuan Xue Ban. 2005; 36(6): 873-6. |
| [12] |
Zujovic V., Thibaud J., Bachelin C. et al. Boundary cap cells are highly competitive for CNS remyelination: fast migration and Efficient differentiation in PNS and CNS myelin-forming cells. Stem Cells 2010; 28: 470-79. |
| [13] |
Wang J., Zhang P., Wang Y. et al. The observation of phenotypic changes of Schwann cells after rat sciatic nerve injury. Artif. Cells Blood Substit. Immobil. Biotechnol. 2010; 38(1): 24-8. |
| [14] |
Murashov A.K., Haq I.U., Hill C. et al. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. Brain Res. Mol. 2001; 93(2): 199-208. |
| [15] |
Pieri I., Cifuentes-Diaz C., Oudinet J.P. Modulation of HSP25 expression during anterior horn motor neuron degeneration in the paralysé mouse mutant. J. Neurosci. Res. 2001; 65(3): 247-53. |
Eco-Vector
/
| 〈 |
|
〉 |