Application of nanocomposite coatings for multipotent mesenchymal stromal cells cultivation technologies

A. N Goltsev , I. V Rassokha , T. G Dubrava , L. V Ostankova , M. V Ostankov , E. A Gordienko , V. I Safonov , AV. V Zykova

Genes & Cells ›› 2013, Vol. 8 ›› Issue (1) : 46 -50.

PDF
Genes & Cells ›› 2013, Vol. 8 ›› Issue (1) : 46 -50. DOI: 10.23868/gc121605
Articles
research-article

Application of nanocomposite coatings for multipotent mesenchymal stromal cells cultivation technologies

Author information +
History +
PDF

Abstract

The results of experimental research for the effect character of nanocomposite coatings with different physicochemical parameters on structural and functional properties (adhesive potential, phenotype, expression of ido gene) of multipotent mesenchymal stromal cells (MMSCs) are presented in the work. In the whole spectrum of tested nanocoatings (Al 2O 3, ZrO 2, Ta 2O 5) we have established the ability of oxide coating Al2O3 to monolayerly enrich the cultured in vitro bone marrow (BM) with the MMSCs and increase the degree of ido expression. This can expand the spectrum and give them new shapes of therapeutic potential in clinical practice.

Keywords

nanocomposite coatings / multipotent mesenchymal stromal cells / ido gene

Cite this article

Download citation ▾
A. N Goltsev, I. V Rassokha, T. G Dubrava, L. V Ostankova, M. V Ostankov, E. A Gordienko, V. I Safonov, AV. V Zykova. Application of nanocomposite coatings for multipotent mesenchymal stromal cells cultivation technologies. Genes & Cells, 2013, 8(1): 46-50 DOI:10.23868/gc121605

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Щепкина Е.А. Кругляков П.В. Соломин Л.Н. и др. Клинический опыт трансплантации аутологичных мезенхимальных стволовых клеток при лечении ложных суставов длинных трубчатых костей. Травма 2007; 8 (3): 22—30.

[2]

Parvizi J., Mehta S. Nanotechnology in Orthopaedic Surgery. US Musculoskeletal Review 2009; 4(1): 8—10.

[3]

Webster T.J. Nanomedicine: what's in a definition? Nanomedicine 2006; 1(2): 169—76.

[4]

Diener A., Nebe B., Uthen F.L. et al. Control of focal adhesion dynamics by material surface haracteristics. Biomaterials 2005; 26 (4): 383—92.

[5]

Dalby M.J., Riehle M.O., Johnstone H.J.H. et at. Nonadhesive nanotopography: Fibroblast response to polytn-butyl methacrylate)— polytstyrene) demixed surface features. J. Biomed. Mater. Res. 2003; 67(3): 1025—32.

[6]

Херрингтон С., Макги Д. Молекулярная клиническая диагностика. 1999. М.: Мир; 558.

[7]

Safonov. V., A. Zykova., J.Smolik, et al. Nano scale biomaterial interface modifications for advanced tissue engineering applications. J. Physics. 2012; 356: 1—5.

[8]

Baksh D., Song L., Tuan R.S. Adult mesenchymal stem cells: characterization, differentiation and application in cell and gene therapy. J. Cell Mol. Med. 2004; 8 (3): 301—16.

[9]

Simmons P.J., Masinovsky B., Longenecker B.M. et al. Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 1992; 80(2): 388-95.

[10]

Tzircotis G., Thorne R.F., Isacke C.M. Chemotaxis towards hyaluronan is dependent on CD44 expression and modulated by cell type variation in CD44-hyaluronan binding. J. Cell Sci. 2005; 118(21): 5119-28.

[11]

Sanchez-Elsner T., Botella L.M., Velasco B. et al. Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J. Biol. Chem. 2002; 277(46): 43799-808.

[12]

Mellor A.L., Chandler P., Kook L.G. et al. Indoleamine 2.3-dioxygenase, immunosupression and pregnancy. J. Reprod. Immunol. 2002; 57(1-2): 143-50.

[13]

Ball J.H., Yuasa J.H., Austin J.D.Ch. et al. Indoleamine 2.3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int. J. Biochem. Cell Biol. 2009; 41 (3): 467-71.

[14]

Rombouts W.J.C., Ploemacher R.E. Nanotechnology in orthopaedic surgery. Leukemia 2003; 17 (1): 160-70.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/