Gene and cell therapy of retinal diseases

V V Maximov , M A Lagarkova , S L Kiselev

Genes & Cells ›› 2012, Vol. 7 ›› Issue (3) : 12 -20.

PDF
Genes & Cells ›› 2012, Vol. 7 ›› Issue (3) : 12 -20. DOI: 10.23868/gc121564
Articles
other

Gene and cell therapy of retinal diseases

Author information +
History +
PDF

Abstract

Gene and cell therapy are tightly associated and quicklydeveloping areas of biomedicine, which purpose is developmentof methods to cure diseases caused by genetic defects and/ordeath of certain cell types. Current state of methods of retinaldiseases gene and cell therapy is analyzed in this review. Wereviewed development of gene therapeutic approaches totreatment of the 2-nd form of Lebers congenital amaurosisand other retinal diseases. We also compared therapeuticpotential of pluripotent stem cells and human adult retinalstem cells. Therapeutic potential of pluripotent stem cellsseems to be better due to their ability for unlimited expansionand organogenesis.

Keywords

gene therapy / cell therapy / Leber's congenital amaurosis / retinal disease / pluripotent stem cells

Cite this article

Download citation ▾
V V Maximov, M A Lagarkova, S L Kiselev. Gene and cell therapy of retinal diseases. Genes & Cells, 2012, 7(3): 12-20 DOI:10.23868/gc121564

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

1. Koenekoop R.K. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv. Ophthalmol. 2004; 49(4): 379-98.

[2]

2. Stone E.M. Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am. J. Ophthalmol. 2007; 144(6): 791-811.

[3]

3. Chung D.C., Traboulsi E.I. Leber congenital amaurosis: clinical correlations with genotypes, gene therapy trials update, and future directions. AAPOS 2009; 13(6): 587-92.

[4]

4. Grieger J.C., Samulski R.J. Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol. 2012; 507: 229-54.

[5]

5. Kotin R.M., Siniscalco M., Samulski R.J. et al. Site-specific integration by adeno-associated virus. PNAS USA 1990; 87(6): 2211-15.

[6]

6. Samulski R.J., Zhu X., Xiao X. et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO 1991; 10(12): 3941-50.

[7]

7. Acland G.M., Aguirre G.D., Ray J. et al. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 2001; 28(1): 92-5.

[8]

8. Aguirre G.D., Baldwin V., Pearce-Kelling S. et al. Congenital stationary night blindness in the dog: common mutation in the RPE65 gene indicates founder effect. Mol. Vis. 1998; 4: 23-9.

[9]

9. Narfström K., Katz M.L., Ford M. et al. In vivo gene therapy in young and adult RPE65-/- dogs produces long-term visual improvement. J Hered. 2003; 94(1): 31-7.

[10]

10. Narfström K., Katz M.L., Bragadottir R. et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest. Ophthalmol. Vis. Sci. 2003; 44(4): 1663-72.

[11]

11. Acland G.M., Aguirre G.D., Bennett J. et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol. Ther. 2005; 12(6): 1072-82.

[12]

12. Jacobson S.G., Acland G.M., Aguirre G.D. et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol. Ther. 2006; 13(6): 1074-84.

[13]

13. Lai C.M., Yu M.J., Brankov M. et al. Recombinant adenoassociated virus type 2-mediated gene delivery into the Rpe65-/- knockout mouse eye results in limited rescue. Genet. Vaccines Ther. 2004; 2(1): 3.

[14]

14. Dejneka N.S., Surace E.M., Aleman T.S. et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol. Ther. 2004; 9(2): 182-8.

[15]

15. Bennicelli J., Wright J.F., Komaromy A. et al. Reversal of blindness in animal models of leber congenital amaurosis using optimized AAV2-mediated gene transfer. Mol. Ther. 2008 ; 16(3): 458-65.

[16]

16. Pang J., Boye S.E., Lei B. et al. Self-complementary AAVmediated gene therapy restores cone function and prevents cone degeneration in two models of Rpe65 deficiency. Gene Ther. 2010; 17(7): 815-26.

[17]

17. Li X., Li W., Dai X. et al. Gene therapy rescues cone structure and function in the 3-month-old rd12 mouse: a model for midcourse RPE65 leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci. 2011; 52(1): 7-15.

[18]

18. Jacobson S.G., Boye S.L., Aleman T.S. et al. Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis. Hum. Gene Ther. 2006; 17(8): 845-58.

[19]

19. Bainbridge J.W., Smith A.J., Barker S.S. et al. Effect of gene therapy on visual function in Lebers congenital amaurosis. N. Engl. J. Med. 2008; 358(21): 2231-9.

[20]

20. Maguire A.M., Simonelli F., Pierce E.A. et al. Safety and efficacy of gene transfer for Lebers congenital amaurosis. N. Engl. J. Med. 2008; 358(21): 2240-8.

[21]

21. Hauswirth W.W., Aleman T.S., Kaushal S. et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene Ther. 2008; 19(10): 979-90.

[22]

22. Cideciyan A.V., Aleman T.S., Boye S.L. et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. PNAS USA 2008; 105(39): 15112-7.

[23]

23. Moullier P., Snyder R.O. Recombinant adeno-associated viral vector reference standards. Methods Enzymol. 2012; 507: 297- 311.

[24]

24. Cideciyan A.V., Hauswirth W.W., Aleman T.S. et al. Vision 1 year after gene therapy for Lebers congenital amaurosis. N. Engl. J Med. 2009; 361(7): 725-7.

[25]

25. Cideciyan A.V., Hauswirth W.W., Aleman T.S. et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum. Gene Ther. 2009; 20(9): 999-1004.

[26]

26. Simonelli F., Maguire A.M., Testa F. et al. Gene therapy for Lebers congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther. 2010; 18(3): 643-50.

[27]

27. Maguire A.M., High K.A., Auricchio A. et al. Age-dependent effects of RPE65 gene therapy for Lebers congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374(9701): 1597-605.

[28]

28. Jacobson S.G., Cideciyan A.V., Ratnakaram R. et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol. 2012; 130(1): 9-24.

[29]

29. Bennett J., Ashtari M., Wellman J. et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci. Transl. Med. 2012; 4(120): 120ra15.

[30]

30. http://www.clinicaltrials.gov

[31]

31. Pechan P., Rubin H., Lukason M. et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther. 2009; 16(1): 10-6.

[32]

32. Lukason M., DuFresne E., Rubin H. et al. Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule. Mol. Ther. 2011; 19(2): 260-5.

[33]

33. Maclachlan T.K., Lukason M., Collins M. et al. Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration. Mol. Ther. 2011; 19(2): 326-34.

[34]

34. Campochiaro P.A., Nguyen Q.D., Shah S.M. et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum. Gene Ther. 2006; 17(2): 167-76.

[35]

35. Dawson D.W., Volpert O.V., Gillis P. et al. Pigment epitheliumderived factor: a potent inhibitor of angiogenesis. Science 1999; 285(5425): 245-8.

[36]

36. Mori K., Duh E., Gehlbach P. et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J. Cell Physiol. 2001; 188(2): 253-63.

[37]

37. Mori K., Gehlbach P., Ando A. et al. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest. Ophthalmol. Vis. Sci. 2002; 43(7): 2428-34.

[38]

38. Gehlbach P., Demetriades A.M., Yamamoto S., et al. Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization. Gene Ther. 2003; 10(8): 637-46.

[39]

39. Saishin Y., Silva R.L., Saishin Y. et al. Periocular gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization in a human-sized eye. Hum. Gene Ther. 2005; 16(4): 473-8.

[40]

40. Mori K., Gehlbach P., Yamamoto S. et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 2002; 43(6): 1994- 2000.

[41]

41. MacDonald I.M., Sereda C., McTaggart K. et al. Choroideremia gene testing. Expert. Rev. Mol. Diagn. 2004; 4(4): 478-84.

[42]

42. Congdon N., OColmain B., Klaver C.C. et al.; Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol. 2004; 122(4): 477-85.

[43]

43. Tropepe V., Coles B.L., Chiasson B.J. et al. Retinal stem cells in the adult mammalian eye. Science 2000; 287(5460): 2032-6.

[44]

44. Ahmad I., Tang L., Pham H. Identification of neural progenitors in the adult mammalian eye. Biochem. Biophys. Res. Commun. 2000; 270(2): 517-21.

[45]

45. Coles B.L., Angénieux B., Inoue T. et al. Facile isolation and the characterization of human retinal stem cells. PNAS USA 2004; 101(44): 15772-7

[46]

46. Mayer E.J., Carter D.A., Ren Y. et al. Neural progenitor cells from postmortem adult human retina. Br. J. Ophthalmol. 2005; 89(1): 102-6.

[47]

47. Xu H., Sta Iglesia D.D., Kielczewski J.L. et al. Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Invest. Ophthalmol. Vis. Sci. 2007; 48(4): 1674-82.

[48]

48. Carter D.A., Mayer E.J., Dick A.D. The effect of postmortem time, donor age and sex on the generation of neurospheres from adult human retina. Br. J. Ophthalmol. 2007; 91(9): 1216-8.

[49]

49. Carter D.A., Dick A.D., Mayer E.J. CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF). BMC Ophthalmol. 2009; 9: 1.

[50]

50. Bradford R.L., Wang C., Zack D.J. et al. Roles of cell-intrinsic and microenvironmental factors in photoreceptor cell differentiation. Dev. Biol. 2005; 286(1): 31-45.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/