Effect of G-CSF on proangiogenic properties mobilized peripheral blood cells in patients with chronic heart failure
V I Konenkov , O V Poveshchenko , I I Kim , E A Pokushalov , A B Romanov , N A Guleva , V V Bernvald , A V Shevchenko , O V Golovanova , E V Yankyate , A F Poveshchenko , A M Karaskov
Genes & Cells ›› 2011, Vol. 6 ›› Issue (3) : 71 -75.
Effect of G-CSF on proangiogenic properties mobilized peripheral blood cells in patients with chronic heart failure
The aim is to study the phenotypic characteristics andcytokine-producing properties mobilized drug administrationG-CSF from bone marrow mononuclear cells of peripheralblood of patients with heart failure, which developed afteracute myocardial infarction, in connection with the efficiencyof intramyocardial stem cell therapy. The study included 67patients with CHD and III-IV functional class congestiveheart failure (NYHA), receiving current standard therapy.Shown that the introduction of the drug G-CSF results inmobilization of endothelial progenitor cells (EPC) from bonemarrow into peripheral blood (CD34+/CD133+and CD34+/KDR+populations). Intramyocardial cell injection resulted inimproved perfusion at the injection site in 76% of patients.Patients who responded to improved perfusion, the number ofCD34+CD133+PC in 3,2 times higher than in patients withouteffect or impairment. Mononuclear cells after administrationof G-CSF in a 48 hour culture secrete cytokines, Epo,GM-CSF, TNF-, contribute to the improvement of myocardialperfusion. Peripheral blood is a readily available source of EPС,and mononuclear cells after mobilization are able to exertreparative effects on the ischemic myocardium.
| [1] |
Harada M., Qin Y., Takano H. et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med. 2005; 11: 305-11. |
| [2] |
Wang Y., Tagil K., Ripa R.S. et al. Effect of mobilization of bone marrow stem cells by granulocyte colony stimulating factor on clinical symptoms, left ventricular perfusion and function in patients with severe chronic ischemic heart disease. Int. J. Cardiol. 2005; 100: 477-83. |
| [3] |
Asahara T., Murohara T., Sullivan A. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-7. |
| [4] |
Capobianco S., Chennamaneni V., Mittal M. et al. Endothelial progenitor cells as factors in neovascularization and endothelial repair. World J. Cardiol. 2010. 26; 2(12): 411-20 |
| [5] |
de Boer H.C., Hovens M.M., van Oeveren-Rietdijk A.M. et al. Human CD34+/KDR+ cells are generated from circulating CD34+ cells after immobilization on activated platelets. Arterioscler. Thromb. Vasc. Biol. 2011; 31: 408-15. |
| [6] |
Dimmeler S., Leri A. Aging and disease as modifiers of efficacy of cell Therapy. Circ. Res. 2008; 102: 1319-30. |
| [7] |
Honold J., Lehmann R., Heeschen C. et al. Effects of granulocyte colony stimulating factor on functional activities of endothelial progenitor cells in patients with chronic ischemic heart disease. Arterioscler. Thromb. Vasc. Biol. 2006; 26: 2238-43. |
| [8] |
Leone A., Valgimigli M., Giannico M. B. et al. From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. European. Heart J. 2009; 30: 890-9. |
| [9] |
Zampetaki A., Kirton J., Xu Q. et.al. Vascular repair by endothelial progenitor cells. Cardiovascular. Research. 2008; 78: 413-21. |
| [10] |
Friedrich E.B., Walenta K., Scharlau J. et al. CD34-/CD133+/ VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ. Res. 2006; 98: e20-e25. |
| [11] |
Powell T.M., Paul J.D., Hill J.M. et al. Granulocyte colonystimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 296-301. |
| [12] |
Koyanagi M., Bushoven P., Iwasaki M. et al. Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ. Res. 2007; 101: 1139-45. |
| [13] |
Manginas A., Goussetis E., Koutelou M. et. al. Pilot study to evaluate the safety and feasibility of intracoronary CD133+ and CD133- CD34+ cell therapy in patients with nonviable anterior myocardial infarction. Catheter Cardiovasc. Interv. 2007; 69: 773-81. |
| [14] |
Tse H., Siu C., Zhu S. et al. Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. Eur. J. Heart Fail. 2007; 9: 747-53. |
| [15] |
Martin-Rendon E., Brunskill S.J., Hyde C.J. et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J. 2008; 29: 1807-18. |
| [16] |
Arshed A.Т., Quyyumi E., Waller K.Т. et al. CD34+ cell infusion after ST elevation myocardial infarction is associated with improved perfusion and is dose dependent. Amer. Heart J. 2011; 161: 98-105. |
| [17] |
Gnecchi M., Zhang Z., Ni A. et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 2008; 103: 1204-19. |
| [18] |
Latini R., Brines M., Fiordaliso F. Do non-hemopoietic effects of erythropoietin play a beneficial role in heart failure? Heart Fail. Rev. 2008; 13: 415-23. |
| [19] |
Dunlay S.M., Weston S.A., Redfield M.M. et al. Tumor necrosis factor-alpha and mortality in heart failure: a community study. Circulation 2008; 118: 625-31. |
Eco-Vector
/
| 〈 |
|
〉 |