The use of transplants containing multipotent mesenchymal stromal cells for the repair of the articular surface in experiment

A S Grigoryan , R V Deev , P V Kruglyakov , A A Bilibina , I B Sokolova , N N Pavlichenko , D G Polyntsev , A S Grigorian , R V Deev , P V Kruglyakov , A A Bilibina , I B Sokolova , N N Pavlichenko , D G Polyntsev

Genes & Cells ›› 2010, Vol. 5 ›› Issue (2) : 44 -55.

PDF
Genes & Cells ›› 2010, Vol. 5 ›› Issue (2) : 44 -55. DOI: 10.23868/gc121472
Articles
other

The use of transplants containing multipotent mesenchymal stromal cells for the repair of the articular surface in experiment

Author information +
History +
PDF

Abstract

The effects of the allogeneous demineralized bone transplants, seeded with bone marrow-derived multipotent mesenchymal stromal cells CMSCsJ, on the healing of the damaged articular cartilage and the subchondral bone were studied. It was shown that the use of allogeneous as well as autologous MSCs on the demineralized bone transplants and also on the transplants combined with type I collagen gel promote the remodeling of the regenerating tissue and the recovery of the histotypic cartilaginous and osseous structures in comparison with the articular surface regeneration without any therapy or after the procedure of the mosaic chondroplasty. Nevertheless, the positive effects of cell therapy were not clinically prominent, which means most probably in that case that the generally accepted experimental model is not adequate in full measure, but the approach used is promising.

Keywords

multipotent mesenchymal stromal cells / articular surface damage / articular cartilage healing / mosaic osteochondral plasty

Cite this article

Download citation ▾
A S Grigoryan, R V Deev, P V Kruglyakov, A A Bilibina, I B Sokolova, N N Pavlichenko, D G Polyntsev, A S Grigorian, R V Deev, P V Kruglyakov, A A Bilibina, I B Sokolova, N N Pavlichenko, D G Polyntsev. The use of transplants containing multipotent mesenchymal stromal cells for the repair of the articular surface in experiment. Genes & Cells, 2010, 5(2): 44-55 DOI:10.23868/gc121472

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Edwards J. Physical characteristics of articular cartilage. Proc. Ins. Mech. Eng. 1ЭБ7; 181: 16-24.

[2]

Shapiro F., Kolde S., Glimcher M. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J. Bone. Joint. Surg. 1993; 75A: 532-53.

[3]

Brittberg M., Lindahl A., Nilsson A. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. Mew Engl. J. Med. 1994; 331: 889-95.

[4]

Brittberg M., Nilsson A., Lindahl A. et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin. Orthop. 1996; 326: 270-83.

[5]

Noguchi Т., Oka M., Fujino M. et al. Repair of osteochondral defects with grafts of cultured chondrocyte: comparison of allografts and isografts. Clin. Orthop. 1994; 302: 251-8.

[6]

Wakitani S., Kimura Т., Hirooka A. et al. Repair of rabbit articular surface with allograft chondrocyte embedded in collagen gel. J. Bone. Joint Surg. 1989; 71B: 74-80.

[7]

Grande D.A., Pitman M.I., Peterson L. et al. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J. Orthop. Res. 1989; 7(2): 208-18.

[8]

Brittberg M., Lindahl A., Nilsson A. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. M. Engl. J. Med. 1994; 331(14): 889-95.

[9]

Saris D.B., Vanlauwe J., Victor J. et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am. J. Sports Med. 2008; 36: 235-46.

[10]

Horas U., Pelinkovic D., Herr G. et al. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J. Bone Joint Surg. Am. 2003; 85A: 185-92.

[11]

Knutsen G., Engebretsen L., Ludvigsen T.C. et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J. Bone Joint Surg. Am. 2004; 86A: 455-64.

[12]

Bosnakovski D., Mizuno M., Kim G. et al. Chondrogenic differentiation of bovine marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSCs chondrogenesis. Biotechnol. Bioeng. 2006; 93: 1152-63.

[13]

Johnstone В., Hering T.M., Caplan A.I. et al. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 1998; 238: 265-72.

[14]

Mackay A.M., Beck S.C., Murphy J.M. et al. Chondrogenic differentiation of cultured mesenchymal stem cells from marrow. Tissue Eng. 1998; 4: 415-28.

[15]

Winter A., BreitS., Parsch D. etal. Cartilage-like gene expression in differentiated human stem cell spheroids: A comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum. 2003; 48: 418-29.

[16]

Fan H., Hu Y., Zhang С et al. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 2006; 27:4573-80.

[17]

Fan H., Liu H., Zhu R. et al. Comparison of chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells. Cell Transplant. 2007; 16: 823-32.

[18]

Wakitani S., Goto Т., Pineda S.J. et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 1ЭЭ4; 76A: 579-92.

[19]

Guo X., Wang C, Zhang Y. et al. Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng. 2004; 10: 1818-29.

[20]

Mrugala D., Bony C, Neves N. et al. Phenotypic and functional characterization of ovine mesenchymal stem cells: Application to a cartilage defect model. Ann. Rheum. Dis. 2008; 67: 288-95.

[21]

21.Wilke M.M., Nydam D.V., Nixon A.J. Enchanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J. Orthop. Res. 2007; 25: 913-25.

[22]

Wakitani S., Imoto K., Yamamoto T. et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002; 10: 199-206.

[23]

23. Haddo 0., Mahroof S., Higgs D. et al. The use of chondrogide membrane in autologous chondrocyte implantation. Knee 2004; 11: 51-5.

[24]

Kreuz P.C., Steinwachs M., Erggelet С et al. Classification of graft hypertrophy after autologous chondrocyte implantation of full-thickness chondral defects in the knee. Osteoarthritis Cartilage 2007; 15: 1339-47.

[25]

Steinwachs M., Kreuz P.O. Autologous chondrocyte implantation in chondral defects of the knee with a type l/lll collagen membrane: A prospective study with a 3-year follow-up. Arthroscopy 2007; 23: 381-7.

[26]

Истранов Л.П., Бондарева Л.П. Использование коллаген-содержащего сырья для медицинских и микробиологических целей. В кн.: Лекарственные средства, экономика, технология и перспективы получения. Обзорная информация. М. 1969, вып. 4: 1-35.

[27]

Волкова О.В., Елецкий Ю.К. Основы гистологии с гистологической техникой. М.: Медицина 1982, 304 с.

[28]

Moreno-Alvarez P., Sanchez-Guerrero Е., Martinez-Cordero Е. et al. Aerosolized polymerized type I collagen reduces airway inflammation and remodeling in a guinea pig model of allergic asthma. Lung 2010; in print.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/