Stvolovye kletki v regenerativnoy terapii serdechnykh zabolevaniy: rol' mezhkletochnykh vzaimodeystviy
EYu Plotnikov , DB Zorov , G T Sukhikh
Genes & Cells ›› 2009, Vol. 4 ›› Issue (1) : 43 -49.
Stvolovye kletki v regenerativnoy terapii serdechnykh zabolevaniy: rol' mezhkletochnykh vzaimodeystviy
| [1] |
Taylor D.O., Edwards L.B., Boucek М.М. et al. Registry of the International Society for Heart and Lung Transplantation: twenty-third official adult heart transplantation report-2006. J. Heart Lung Transplant. 20DB; 25: 8ВЭ-7Э. Notes: CORPORATE NAME: International Society for Heart and Lung Transplantation |
| [2] |
Trulock E.P., Edwards L.B., Taylor D.O. et al. Registry of the International Society for Heart and Lung Transplantation: twenty-third official adult lung and heart-lung transplantation report-2006. J. Heart Lung Transplant. 2006; 25: 880-92. Notes: CORPORATE NAME: International Society for Heart and Lung Transplantation |
| [3] |
Evans M.J., Kaufman M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154-B. |
| [4] |
Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. etal. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-7. |
| [5] |
Doetschman T.C., Eistetter H., Katz M. et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 1985; 87: 27-45. |
| [6] |
Б. Kehat I., Kenyagin-Karsenti D., Snir M. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 20D1; 108: 407-14. |
| [7] |
Kehat I., Khimovich L, Caspi 0. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 2004; 22: 1282-Э. |
| [8] |
Min J.Y., Yang Y., Converse K.L. et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 2002; 92: 288-96. |
| [9] |
Hodgson D.M., Behfar A., Zingman L.V. et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2004; 287: H471-9. |
| [10] |
Gruen L, Grabel L. Concise review: scientific and ethical roadblocks to human embryonic stem cell therapy. Stem Cells 2006; 24: 2162-9. |
| [11] |
Menard C, Hagege A.A., Agbulut 0. et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 2005; 366: 1005-12. |
| [12] |
Laflamme M.A., Gold J., Xu С et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. 2005; 167: 663-71. |
| [13] |
Friedenstein A.J., Piatetzky-Shapiro 1.1., Petrakova K.V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 1966; 16: 381-90. |
| [14] |
PittengerM.F., Mackay A.M., Beck S.С et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-7. |
| [15] |
Tondreau Т., Lagneaux L, Dejeneffe M. et al. Bone marrow-derived mesenchymal stem cells already express specific neural proteins before any differentiation. Differentiation 2004; 72: 319-26. |
| [16] |
Gnecchi M., Melo L.G. Bone marrow-derived mesenchyme stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol. Biol. 2009; 482: 281-94. |
| [17] |
Tondreau Т., Lagneaux L., Dejeneffe M. et al. Isolation of BM mesenchymal stem cells by plastic adhesion or negative selection: phenotype, proliferation kinetics and differentiation potential. Cytotherapy 2004; 6: 372-9. |
| [18] |
Makino S., Fukuda K., Miyoshi S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 1999; 103: 697-705. |
| [19] |
Orlic D., Kajstura J., Chimenti S. et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-5. |
| [20] |
Murry C.E., Soonpaa M.H., Reinecke H. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Mature 2004; 428: 664-8. |
| [21] |
Yoon J., Shim W.J., Ro Y.M., Lim D.S. Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes. Ann. Hematol. 2005; 84: 715-21. |
| [22] |
Fukuda K., Fujita J. Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardia infarction in mice. Kidney Int. 2005; 68: 1940-3. |
| [23] |
Toma C, Pittenger M.F., Cahill K.S. et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105: 93-8. |
| [24] |
Strauer B.E., Brehm M., Zeus T. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913-8. |
| [25] |
Schachinger V., Assmus В., Britten M.B. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol. 2004; 44: 1690-9. |
| [26] |
Britten M.B., Abolmaali N.D., Assmus B. et al. Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-АМП: mechanistic insights from seria contrast-enhanced magnetic resonance imaging. Circulation 2003; 108: 2212-8. |
| [27] |
Miyahara Y., Nagaya N., Kataoka M. et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardia infarction. Nat. Med. 2006; 12: 459-65. |
| [28] |
Zhang S., Jia Z., Ge J. et al. Purified human bone marrow multipotent mesenchymal stem cells regenerate infarcted myocardium in experimental rats. Cell Transplant. 2005; 14: 787-98. |
| [29] |
Phinney D.G., Prockop D.J. Concise review: mesenchymal stem/ multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells 2007; 25: 2896-902. |
| [30] |
Spyridonidis A., Zeiser R., Folio M. et al. Stem cell plasticity: the debate begins to clarify. Stem Cell Rev. 2005; 1: 37-43. |
| [31] |
Herzog E.L., Chai L., Krause D.S. Plasticity of marrow-derived stem cells. Blood 2003; 102: 3483-93. |
| [32] |
Devine S.M., Peter S., Martin B.J. et al. Mesenchymal stem cells: stealth and suppression. Cancer J. 2001; 7 Suppl 2: S76-82. |
| [33] |
Majumdar M.K., Keane-Moore M., Buyaner D. et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J. Biomed. Sci. 2003; 10: 228-41. |
| [34] |
Krampera M., Glennie S., Dyson J. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 3722-9. |
| [35] |
Liechty K.W., MacKenzie T.C., Shaaban A.F. et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 2000; 6: 1282-6. |
| [36] |
Pittenger M.F., Martin B.J. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 2004; 95: 9-20. |
| [37] |
Kern S., Eichler H., Stoeve J. et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294-301. |
| [38] |
Montesinos J., Flores-Figueroa E., Castillo-Medina S. et al. Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 2009; 16:1-14. |
| [39] |
Miao Z., Jin J., Chen L. et al. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 2006; 30: 681-7. |
| [40] |
Covas D.T., Panepucci R.A., Fontes A.M. et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp. Hematol. 2008; 36: 642-54. |
| [41] |
Musina R.A., Bekchanova E.S., Belyavskii A.V., Sukhikh G.T. Differentiation potential of mesenchymal stem cells of different origin. Bull. Exp. Biol. Med. 2006; 141: 147-51. |
| [42] |
Nadri S., Soleimani M. Comparative analysis of mesenchyme stromal cells from murine bone marrow and amniotic fluid. Cytotherapy 2007; 9: 729-37. |
| [43] |
Beltrami A.P., Urbanek K., Kajstura J. et al. Evidence that human cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 2001; 344: 1750-7. |
| [44] |
Oh H., Bradfute S.B., Gallardo T.D. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 2003; 100: 12313-8. |
| [45] |
Messina E., De Angelis L., Frati G. et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ. Res. 2004; 95: 911-21. |
| [46] |
Matsuura K., Nagai Т., Nishigaki N. et al. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem. 2004; 279: 11384-91. |
| [47] |
Wang Q.D., Sjoquist P.O. Myocardial regeneration with stem cells: pharmacological possibilities for efficacy enhancement. Pharmacol. Res. 2006; 53: 331-40. |
| [48] |
Smits P.С Myocardial repair with autologous skeletal myoblasts: a review of the clinical studies and problems. Minerva Cardioangiol. 2004; 52: 525-35. |
| [49] |
Chang M.G., Tung L., Sekar R.B. et al. Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation 2006; 113: 1832-41. |
| [50] |
Shang L.L., Dudley S.C. Jr, Pfahnl A.E. Analysis of arrhythmic potential of embryonic stem cell-derived cardiomyocytes. Methods Mol. Biol. 2006; 330: 221-31. |
| [51] |
Hagege A.A., Carrion C, Menasche P. et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003; 361: 491-2. |
| [52] |
Abraham M.R., Henrikson C.A., Tung L. et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ. Res. 2005; 97: 159-67. |
| [53] |
Stagg M.A., Coppen S.R., Suzuki K. et al. Evaluation of frequency, type, and function of gap junctions between skeletal myoblasts overexpressing connexin43 and cardiomyocytes: relevance to cell transplantation. FASEB J. 2006; 20: 744-6. |
| [54] |
Balogh S., Naus C.C., Merrifield P.A. Expression of gap junctions in cultured rat L6 cells during myogenesis. Dev. Biol. 1993; 155: 351-60. |
| [55] |
Leobon В., Garcin I., Menasche P. et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc. Natl. Acad. Sci. U S A 2003; 100: 7808-11. |
| [56] |
Reinecke H., MacDonald G.H., Hauschka S.D., Murry C.E. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J. Cell Biol. 2000; 149: 731-40. |
| [57] |
Lo C.W. Genes, gene knockouts, and mutations in the analysis of gap junctions. Dev. Genet. 1999; 24: 1-4. |
| [58] |
Formigli L., Francini F., Tani A. et al. Morphofunctional integration between skeletal myoblasts and adult cardiomyocytes in coculture is favored by direct cell-cell contacts and relaxin treatment. Am. J. Physiol. Cell Physiol. 2005; 288: C795-804. |
| [59] |
Valiunas V., Doronin S., Valiuniene L. et al. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J. Physiol. 2004; 555: 617-26. |
| [60] |
Beeres S.L., Atsma D.E., van der Laarse A. et al. Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures. J. Am. Coll. Cardiol. 2005; 46: 1943-52. |
| [61] |
Gallo M.P., Ramella R., Alloatti G. et al. Limited plasticity of mesenchymal stem cells cocultured with adult cardiomyocytes. J. Cell. Biochem. 2007; 100: 86-99. |
| [62] |
Alvarez-Dolado M., Pardal R., Garcia-Verdugo J.M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968-73. |
| [63] |
Vassilopoulos G., Wang P.R., Russell D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 2D03; 422: 901- 4. |
| [64] |
Garbade J., Schubert A., Rastan A.J. et al. Fusion of bone marrow-derived stem cells with cardiomyocytes in a heterologous in vitro model. Eur. J. Cardiothorac. Surg. 2005; 28: 685-91. |
| [65] |
Matsuura K., Wada H., Nagai T. et al. Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J. Cell Biol. 2004; 167: 351-63. |
| [66] |
Nygren J.M., Jovinge S., Breitbach M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 2004; 10: 494-501. |
| [67] |
Zhang S., Wang D., Estrov Z. et al. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 2004; 110: 3803-7. |
| [68] |
Rustom A., Saffrich R., Markovic I. et al. Nanotubular highways for intercellular organelle transport. Science 2004; 303: 1007-10. |
| [69] |
Onfelt В., Nedvetzki S., Yanagi K., Davis D.M. Cutting edge: Membrane nanotubes connect immune cells. J. Immunol. 2004; 173: 1511-3. |
| [70] |
Onfelt В., Davis D.M. Can membrane nanotubes facilitate communication between immune cells? Biochem. Soc. Trans. 2004; 32: 676-8. |
| [71] |
Onfelt В., Nedvetzki S., Benninger R.K. et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 2006; 177: 8476-83. |
| [72] |
Galkina S.I., Molotkovsky J.G., Ullrich V., Sud'ina G.F. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions [cytonemes] and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide. Exp. Cell. Res. 2005; 304: 620-9. |
| [73] |
Freund D., Bauer N., Boxberger S. et al. Polarization of human hematopoietic progenitors during contact with multipotent mesenchymal stromal cells: effects on proliferation and clonogenicity. Stem Cells Dev. 2006; 15: 815-29. |
| [74] |
Koyanagi M., Brandes R.P., Haendeler J., Zeiher A.M., Dimmeler S.: Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ. Res. 2005; 96: 1039-41. |
| [75] |
Plotnikov E.Y., Khryapenkova T.G., Vasileva A.K. et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J. Cell. Mol. Med. 2008; 12: 1622-31. |
| [76] |
Gerdes H.H., Bukoreshtliev N.V., Barroso J.F. Tunneling nanotubes: A new route for the exchange of components between animal cells. FEBS Lett. 2007; 581: 2194-201. |
| [77] |
Badorff C, Brandes R.P., Popp R. et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003; 107: 1024-32. |
| [78] |
Demontis F. Nanotubes make big science. PLoS Biol. 2004; 2: E215 |
| [79] |
Guo G.Q., Zheng G.C. Hypotheses for the functions of intercellular bridges in male germ cell development and its cellular mechanisms. J. Theor. Biol. 2004; 229: 139-46. |
Eco-Vector
/
| 〈 |
|
〉 |