Povyshenie effektivnosti zaseleniya biodegradiruemykh matriksov stromal'nymi i epitelial'nymi kletkami pri dinamicheskom kul'tivirovanii
A. V Lyundup , A. G Demchenko , T. H Tenchurin , M. E Krasheninnikov , I. D Klabukov , A. D Shepelev , V. G Mamagulashvili , R. V Oganesyan , A. S Orehov , S. N Chvalun , T. G Dyuzheva
Genes & Cells ›› 2016, Vol. 11 ›› Issue (3) : 102 -107.
Povyshenie effektivnosti zaseleniya biodegradiruemykh matriksov stromal'nymi i epitelial'nymi kletkami pri dinamicheskom kul'tivirovanii
Adhesion and proliferation of eucariotic cells are charac-terizated by high sensibility to the cultivation conditions, cell mediums, material surface properties, et al. The aim of this study was to improve seeding of stromal and epithelial cells on biodegradable matrices. We tested several polymers perspective for regenerative medicine: polycaprolacton, cellulose diacetate, PLGA, PLA/polycaprolacton. Electrospinning forming membranes had different porousity and fiber sizes. We developed a new method for 3D-matrix seeding with the use of rotation of scaffolds with cells. Based on optimal proliferation activity of the 3T3/NIH and MCF-7 cells we have chosen the scaffold compositions for multilayered cells seeding.
tissue engineering / cells adhesion and proliferation / dynamic cultivation / biodegradable materials / material surface properties
| [1] |
Atala A., Danilevskiy M., Lyundup A. et al. The potential role of tissue-engineered urethral substitution: clinical and preclinical studies. J. Tissue Eng. Regen. Med., Dec. 2015. doi: 10.1002/term.2112. [Epub ahead of print]. |
| [2] |
Atala A. Regenerative medicine strategies. J. Pediatr. Surg. 2012; 47(1): 17-28. |
| [3] |
Дюжева Т.Г., Люндуп А.В., Клабуков И.Д. и др. Перспективы создания тканеинженерного желчного протока. Гены и клетки 2016; XI(1): 43-7. |
| [4] |
Battiston K.G., Cheung J.W.C., Jain D. et al. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds. Biomaterials 2014; 35(15): 4465-76. |
| [5] |
Hsu S., Tsai I., Lin D. et al. The effect of dynamic culture conditions on endothelial cell seeding and retention on small diameter polyurethane vascular grafts. Med. Eng. Phys. 2005; 27(3): 267-72. |
| [6] |
Villalona G.A., Udelsman B., Duncan D.R. et al. Cell-seeding techniques in vascular tissue engineering. Tissue Eng. Part B. Rev. 2010; 16(3): 341-50. |
| [7] |
Roh J.D., Brennan M.P., Lopez-Soler R.I. et al. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques. J. Pediatr. Surg. 2007; 42(1): 198-202. |
| [8] |
Ravi S., Qu Z., Chaikof E.L. Polymeric materials for tissue engineering of arterial substitutes. Vascular 2009: 17(Suppl 1): S45-54. |
| [9] |
Portner R., Nagel-Heyer S., Goepfert C. et al. Bioreactor design for tissue engineering. J. Biosci. Bioeng. 2005; 100(3): 235-45. |
| [10] |
Qiao J., Lew C.M.J., Karthikeyan A. et al. Production of PEX protein from QM7 cells cultured in polymer scaffolds in a Taylor- Couette bioreactor. Biochem. Eng. J. 2014; 88: 179-87. |
| [11] |
ГОСТ 10993-5-2011. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследования на цитотоксичность: методы in vitro. |
| [12] |
Loh Q.L., Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng. Part B Rev. 2013; 19(6): 485-502. |
| [13] |
Zeltinger J., Sherwood J. K., Graham D.A. et al. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 2001; 7(5): 557-72. |
| [14] |
Murphy C.M., O'Brien F.J. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adh. Migr. 2010; 4(3): 377-81. |
| [15] |
Ma H., Hu J., Ma P.X. Polymer scaffolds for small-diameter vascular tissue engineering. Adv. Funct. Mater. 2010; 20(17): 2833-41. |
| [16] |
Wolf K., Te Lindert M., Krause M. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 2013; 201(7): 1069-84. |
| [17] |
Насрединов А.С., Лаврешин А.В. Тканевая инженерия кровеносных сосудов: способы совмещения клеток и носителя. Гены клетки 2014; IX(1): 23-34. |
| [18] |
Rubenstein D., Han D., Goldgraben S. et al. Bioassay chamber for angiogenesis with perfused explanted arteries and electrospun scaffolding. Microcirculation 2007; 14(7): 723-37. |
Eco-Vector
/
| 〈 |
|
〉 |