Delivery Cas9 into mitochondria

K. E Orishchenko , J. K Sofronova , E. G Chupakhin , E. A Lunev , I. O Mazunin

Genes & Cells ›› 2016, Vol. 11 ›› Issue (2) : 100 -105.

PDF
Genes & Cells ›› 2016, Vol. 11 ›› Issue (2) : 100 -105. DOI: 10.23868/gc120599
Articles
research-article

Delivery Cas9 into mitochondria

Author information +
History +
PDF

Cite this article

Download citation ▾
K. E Orishchenko, J. K Sofronova, E. G Chupakhin, E. A Lunev, I. O Mazunin. Delivery Cas9 into mitochondria. Genes & Cells, 2016, 11(2): 100-105 DOI:10.23868/gc120599

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schaefer A.M., McFarland R., Blakely E.L. et al. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 2008; 63: 35-9.

[2]

DiMauro S., Schon E.A., Carelli V. et al. The clinical maze of mitochondrial neurology. Nat. Rev. Neurol. 2013; 9: 429-44.

[3]

Schon E.A., DiMauro S., Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 2012; 13: 878-90.

[4]

Sander J.D., Joung J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014; 32: 347-55.

[5]

Harrison M.M., Jenkins B.V., 0'Connor-Giles K.M. et al. CRISPR view of development. Genes Dev. 2014; 28: 1859-72.

[6]

Gammage P.A., Rorbach J., Vincent A.I. et al. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMB0 Mol. Med. 2014; 6: 458-66.

[7]

Bacman S.R., Williams S.L., Pinto M. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 2013; 19: 1111-3.

[8]

Yang L., Guell M., Byrne S. et al. 0ptimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013; 41: 9049-61.

[9]

Sieber F., Duchene A.M., Marechal-Drouard L. Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. Int. Rev. Cell Mol. Biol. 2011; 287: 145-90.

[10]

Mali P., Yang L., Esvelt K.M. et al. RNA-guided human genome engineering via Cas9. Science 2013; 339: 823-6.

[11]

Kaltimbacher V., Bonnet C., Lecoeuvre G. et al. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA 2006; 12: 1408-17.

[12]

Neupert W., Herrmann J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007; 76: 723-49.

[13]

Fink M., Flekna G., Ludwig A. et al. Improved translation efficiency of injected mRNA during early embryonic development. Dev. Dyn. 2006; 235: 3370-8.

[14]

Wang G., Chen H.W., 0ktay Y. et al. PNPASE regulates RNA import into mitochondria. Cell 2010; 142: 456-67.

[15]

Wang G., Shimada E., Koehler C.M. et al. PNPASE and RNA trafficking into mitochondria. Biochim. Biophys. Acta 2012; 1819: 998-1007.

[16]

Tonin Y., Heckel A.M., Dovydenko I. et al. Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA. Biochimie 2014; 100: 192-9.

[17]

Tonin Y., Heckel A.M., Vysokikh M. et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J. Biol. Chem. 2014; 289: 13323-34.

[18]

Ran F.A., Cong L., Yan W.X. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520: 186-91.

[19]

Zetsche B., Gootenberg J.S., Abudayyeh O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-71.

[20]

Shmakov S., Abudayyeh O.O., Makarova K.S. et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Moll. Cell 2015; 60: 385-97.

[21]

Jo A., Ham S., Lee G.H. et al. Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed. Res. Int. 2015; 2015: 305716.

[22]

Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013; 8: 2281-308.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/