Delivery Cas9 into mitochondria
K. E Orishchenko , J. K Sofronova , E. G Chupakhin , E. A Lunev , I. O Mazunin
Genes & Cells ›› 2016, Vol. 11 ›› Issue (2) : 100 -105.
Delivery Cas9 into mitochondria
| [1] |
Schaefer A.M., McFarland R., Blakely E.L. et al. Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 2008; 63: 35-9. |
| [2] |
DiMauro S., Schon E.A., Carelli V. et al. The clinical maze of mitochondrial neurology. Nat. Rev. Neurol. 2013; 9: 429-44. |
| [3] |
Schon E.A., DiMauro S., Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 2012; 13: 878-90. |
| [4] |
Sander J.D., Joung J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014; 32: 347-55. |
| [5] |
Harrison M.M., Jenkins B.V., 0'Connor-Giles K.M. et al. CRISPR view of development. Genes Dev. 2014; 28: 1859-72. |
| [6] |
Gammage P.A., Rorbach J., Vincent A.I. et al. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMB0 Mol. Med. 2014; 6: 458-66. |
| [7] |
Bacman S.R., Williams S.L., Pinto M. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 2013; 19: 1111-3. |
| [8] |
Yang L., Guell M., Byrne S. et al. 0ptimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013; 41: 9049-61. |
| [9] |
Sieber F., Duchene A.M., Marechal-Drouard L. Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. Int. Rev. Cell Mol. Biol. 2011; 287: 145-90. |
| [10] |
Mali P., Yang L., Esvelt K.M. et al. RNA-guided human genome engineering via Cas9. Science 2013; 339: 823-6. |
| [11] |
Kaltimbacher V., Bonnet C., Lecoeuvre G. et al. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA 2006; 12: 1408-17. |
| [12] |
Neupert W., Herrmann J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007; 76: 723-49. |
| [13] |
Fink M., Flekna G., Ludwig A. et al. Improved translation efficiency of injected mRNA during early embryonic development. Dev. Dyn. 2006; 235: 3370-8. |
| [14] |
Wang G., Chen H.W., 0ktay Y. et al. PNPASE regulates RNA import into mitochondria. Cell 2010; 142: 456-67. |
| [15] |
Wang G., Shimada E., Koehler C.M. et al. PNPASE and RNA trafficking into mitochondria. Biochim. Biophys. Acta 2012; 1819: 998-1007. |
| [16] |
Tonin Y., Heckel A.M., Dovydenko I. et al. Characterization of chemically modified oligonucleotides targeting a pathogenic mutation in human mitochondrial DNA. Biochimie 2014; 100: 192-9. |
| [17] |
Tonin Y., Heckel A.M., Vysokikh M. et al. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J. Biol. Chem. 2014; 289: 13323-34. |
| [18] |
Ran F.A., Cong L., Yan W.X. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520: 186-91. |
| [19] |
Zetsche B., Gootenberg J.S., Abudayyeh O.O. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015; 163: 759-71. |
| [20] |
Shmakov S., Abudayyeh O.O., Makarova K.S. et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Moll. Cell 2015; 60: 385-97. |
| [21] |
Jo A., Ham S., Lee G.H. et al. Efficient Mitochondrial Genome Editing by CRISPR/Cas9. Biomed. Res. Int. 2015; 2015: 305716. |
| [22] |
Ran F.A., Hsu P.D., Wright J. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013; 8: 2281-308. |
Eco-Vector
/
| 〈 |
|
〉 |