Strategies to edit paralogous genes with CRISPR/Cas9
A. A Nemudryi , T. B Malankhanova , A. A Malakhova , S. P Medvedev , S. M Zakian
Genes & Cells ›› 2016, Vol. 11 ›› Issue (2) : 87 -94.
Strategies to edit paralogous genes with CRISPR/Cas9
The purpose of this study is to develop the strategies of CRISPR/Cas9 application to improve fidelity and specificity of this platform. Here we use a model system, which includes target gene and a paralogue - potential aim for off-target double-strand break induction. The study was carried on using Brattleboro rats embryonic fibroblasts which are homozygous for a mutation in arginine-vasopressin gene (target). The potential off-target gene is oxytocin gene: its DNA sequence is almost identical to that of arginine-vasopressin gene. To prevent off-target effect we designed several strategies, which were further used on Brattleboro rats embryonic fibroblasts. Here we show, that these strategies allowed us to generate double-strand breaks in arginine-vasopressin gene without any off-target effects in oxytocin gene. The endonuclease restriction assay shows that we have modified arginine-vasopressin gene while using both CRISPR/Cas9 and single-stranded oligonucleotides as a donor for homologous recombination. At last, if we consider Brattleboro rats as a model of monogenic disease the strategies designed could be translated in human therapeutic genome editing studies.
CRISPR/Cas9 / genome engineering / CRISPR/Cas9 / mutation correction / Brattleboro rats
| [1] |
Немудрый А.А., Валетдинова К.Р., Медведев С.П. и др. Системы редактирования геномов TALEN и CRISPR/Cas - инструменты открытий. Acta Naturae 2014, 6(3): 20-42. |
| [2] |
Ran F.A., Cong L., Yan W.X. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91. |
| [3] |
Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23. |
| [4] |
Cox D.B., Platt R.J., Zhang F. Therapeutic genome editing: prospects and challenges. Nat. Med. 2015; 21(2): 121-31. |
| [5] |
Fu Y., Foden J.A., Khayter C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013; 31(9): 822-6. |
| [6] |
Zhang M., D>Aniello C., Verkerk A.0. et al. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue. PNAS USA 2014; 111(50): E5383-92. |
| [7] |
Liang P., Xu Y., Zhang X. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6(5): 363-72. |
| [8] |
Cho S.W., Kim S., Kim J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013; 31(3): 230-2. |
| [9] |
Schmale H. and Richter D. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 1984; 308(5961): 705-9. |
| [10] |
Donaldson Z.R., Young L.J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 2008; 322(5903): 900-4. |
| [11] |
Reyon D., Tsai S.Q., Khayter C. et al. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012; 30(5): 460-5. |
| [12] |
Xiao A., Cheng Z., Kong L. et al. CasOT: a genome-wide Cas9/ gRNA off-target searching tool. Bioinformatics 2014. |
| [13] |
Yang L., Guell M., Byrne S. et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 2013; 41(19): 9049-61. |
| [14] |
Ran F.A., Hsu P.D., Lin C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154(6): 1380-9. |
Eco-Vector
/
| 〈 |
|
〉 |