Pathogenetic parallels between native and bioprosthetic aortic valve calcification

R. A Mukhamadiyarov , N. V Rutkovskaya , I. V Milto , G. Yu Vasyukov , L. S Barbarash

Genes & Cells ›› 2016, Vol. 11 ›› Issue (3) : 72 -79.

PDF
Genes & Cells ›› 2016, Vol. 11 ›› Issue (3) : 72 -79. DOI: 10.23868/gc120587
Articles
research-article

Pathogenetic parallels between native and bioprosthetic aortic valve calcification

Author information +
History +
PDF

Abstract

There was a suggestion that pathological tissue mineralization is a universal, multifactorial, and cell-mediated process, regulated on genetic, biochemical and hormone levels. Structural deterioration of bioprosthetic heart valves is mainly caused by calcification of chemically modified xenogenic tissues. We performed this study with the aim to define parallels in degenerative strokes of native aortic valves and Ca-mediated primary tissue-insolvency of bioprosthetic aortic valves. We investigated calcified tissue samples of bioprosthetic aortic valves and calcified wings of aortic valves. (eight per each group). Functionally safe xenopericardiac mitral prosthetic heart valve, obtained at autopsy were included to investigate processes with prosthetic wings. Histological examination was carried out by hematoxylin and eosin and van Gieson staining on optical microscope AXIOImager A1. We observed mosaic structural alterations which characterized increasing of calcification process in all specimens. There were interactions between mineral deposits and valve tissues by direct contact with the cells and/or fibers of collagen and elastin. Cell composition in calcified native aortic valves was represented by fibroblasts, macrophages, multinucleated giant cells, lymphocytes, and neutrophils. Bioprosthetic heart valves also contained smooth muscle cells and capillaries. Results of our investigation represents that structures of calcified native and bioprosthetic heart valves are similar. This fact make us able to conclude that there are direct cells-mediated processes of biological material and xenogenic aortic valves degradation. Appearance of structurally safe cells in devitalized xenogenic prosthetic aortic valve caused by their functioning in recipient body. We suggest that the source of these cells can be the pluripotent progenitor cells, circulated in bloodstream and able to differentiate into cells of different phenotypes when they penetrated the collagen matrix of implanted prosthetic aortic valves. Based on the above analysis we can suggest that calcium degeneration of soft tissues is an universal pathologic process the basis of which have different mechanisms and the key one is cell-mediated mineralization.

Keywords

calcification / aortic valves / bioprosthetic valves / cells

Cite this article

Download citation ▾
R. A Mukhamadiyarov, N. V Rutkovskaya, I. V Milto, G. Yu Vasyukov, L. S Barbarash. Pathogenetic parallels between native and bioprosthetic aortic valve calcification. Genes & Cells, 2016, 11(3): 72-79 DOI:10.23868/gc120587

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pibarot P., Dumesnil J. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 2009; 119(7): 1034-48.

[2]

Manji R.A., Menkis A.H., Ekser B. et al. The future of bioprosthetic heart valves. Indian J. Med. Res. 2012; 135(2): 150-1.

[3]

Tillquist M., Maddox T. Cardiac crossroads: deciding between mechanical or bioprosthetic heart valve replacement. Pat. Pref. Adher. 2011; 5: 91-9.

[4]

Barbarash O.L., Rutkovskaya N.V., Hryachkova O.N. et al. Impact of recipient-related factors on structural dysfunction rates of xenoaorticbioprothetic heart valve. Pat. Pref. Adher. 2015; 9: 389-99.

[5]

Hutcheson J.D., Goettsch C., Rogers M.A. et al. Revisiting cardiovascular calcification: A multifaceted disease requiring a multidisciplinary approach. Semin. Cell. Dev. Biol. 2015; 6: 167-71.

[6]

Ruiz J.L., Hutcheson J.D., Aikawa, E. Cardiovascular calcification: Current controversies and novel concepts. Cardiovasc. Pathol. 2015; 24(4): 207-12.

[7]

Mikroulis D., Mavrilas D., Kapolos J. et al. Physicochemical and microscopical study of calcific deposits from natural and bioprosthetic heart valves. Comparison and implications for mineralization mechanism. J. Mater. Sci. 2002; 13; 885-9.

[8]

Freeman R.V., Otto C.M. Spectrum of calcific aortic valve disease, pathogenesis, disease progression, and treatment strategies. Circulation 2005; 111: 3316-26.

[9]

Evrard S., Delanaye Р., Kamel S. et al. Vascular calcification: from pathophysiology to biomarkers. Clinica Acta 2015; 438: 401-14.

[10]

Одаренко Ю.Н., Рутковская Н.В., Рогулина Н.В. и соавт. Анализ 23-летнего опыта использования ксеноаортальных эпоксиобработанных биопротезов в хирургии митральных пороков сердца. Исследование факторов реципиента с позиций влияния на развитие кальциевой дегенерации. Комплексные проблемы сердечно-сосудистых заболеваний 2015; 4: 17-25.

[11]

Кудрявцева Ю.А. Биологические протезы клапана сердца. От идеи до клинического применения. Комплексные проблемы сердечно-сосудистых заболеваний 2015; 4: 6-16.

[12]

Miller J.D., Weiss R.M., Heistad D.D. Calcific aortic valve stenosis: methods, models, and mechanisms. Circ. Res. 2011; 108: 1392-412.

[13]

New S.E., Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 2011; 108: 1381-91.

[14]

Акатов В.С., Фадеева И.С., Чеканов А.В. и соавт. Роль клеток реципиента в механизме патологической кальцификации трансплантатов клапанов сердца и сосудов. Биофизика 2010; 55: 937-42.

[15]

Tang Z., Wang A., Yuan F. et al. Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat. Commun. 2012; 3: 875-82.

[16]

Pal S.N., Golledge J. Osteo-progenitors in vascular calcification: a circulating cell theory. J. Atheroscler. Thromb. 2011; 18: 551-9.

[17]

Wylie-Sears J., Aikawa E., Levine R.A. et al.Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 2011; 31: 598-607.

[18]

Мухамадияров Р.А., Рутковская Н.В., Сидорова О.Д. и со-авт. Исследование клеточного состава кальцинированных биопротезов клапанов сердца. Вестник РАМН 2015; 70(6): 662-8.

[19]

Nollert G., Miksch J., Kreuzer E. et al. Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J. Thoracic. Cardiovasc. Surg. 2003; 126: 965-8.

[20]

Mahjoub Y., Mathieu Р., Senechal М. et al. ApoB/ ApoA ratio is associated with increased risk bioprosthetic valve degeneration. J. Amer. Coll. Card. 2013; 61; 752-61.

[21]

Lorusso R., Gelsomino S., Luca F. et al. Type 2 diabetes mellitus is associated with faster degeneration of bioprosthetic valve: Results from a propensity score-matched italian multicenter study. Circulation 2012; 125: 604-14.

[22]

Briand М., Pibarot Р., Despres J.P. et al. Metabolic syndrome is associated with faster degeneration of bioprosthetic valves. Circulation 2006; 114: 1512-7.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

58

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/