Development of tissue-engineered chitosan-polycaprolactone blends for vascular surgery

I. S Zakharova , A. M Smirnova , M. K Zhiven' , Sh. B Saaya , A. I Shevchenko , S. M Zakian , L. N Ivanova

Genes & Cells ›› 2016, Vol. 11 ›› Issue (4) : 50 -56.

PDF
Genes & Cells ›› 2016, Vol. 11 ›› Issue (4) : 50 -56. DOI: 10.23868/gc120577
Articles
research-article

Development of tissue-engineered chitosan-polycaprolactone blends for vascular surgery

Author information +
History +
PDF

Abstract

Tissue engineering provides the opportunity to minimize some possible negative results of the synthetic vascular grafts in long-term follow-up. The choice of the optimal scaffold and cell source for seeding are key conditions to bring properties of vessel substitute to physiological. In some works it is shown that a chitosan-polycaprolactone blend is a suitable biodegradable material for tissue engineering. In this paper we suggest an efficient method to generate of tissue-engineered chitosan-polycaprolactone blends, cellularized by endothelial cells of human cardiac explants. The cells cultured on the blended membranes retain their functional properties: viability and proliferative properties; maintain specific endothelial antigens and synthesis of extracellular matrix. These results suggested that tissue-engineered chitosan-polycaprolactone blends seeded by endothelial cells of human cardiac explants may be potential to development of substitutes for small diameter blood vessels.

Keywords

tissue engineering / endothelial cells / polycaprolactone / chitosan / vascular surgery

Cite this article

Download citation ▾
I. S Zakharova, A. M Smirnova, M. K Zhiven', Sh. B Saaya, A. I Shevchenko, S. M Zakian, L. N Ivanova. Development of tissue-engineered chitosan-polycaprolactone blends for vascular surgery. Genes & Cells, 2016, 11(4): 50-56 DOI:10.23868/gc120577

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G N., Tan A., Gundogan B. et al. Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert. Opin. Biol. Ther. 2015; 15(2): 231-44.

[2]

Tara S., Rocco K.A., Hibino N. et al. Vessel bioengineering. Circ. J. 2014; 78(1): 12-9.

[3]

Wang T.J., Wang I.J., Lu J.N. et al. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Mol. Vis. 2012; 18: 255-64.

[4]

Garcia Cruz D.M., Gomez Ribelles J.L., Salmeron Sanchez M. Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. J. Biomed. Mater. Res. B. Appl. Biomater. 2008; 85(2): 303-13.

[5]

Sarasam A., Madihally S.V. Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials 2005; 26(27): 5500-8.

[6]

Young T.H., Wang I.J., Hu F.R. et al. Fabrication of a bioengineered corneal endothelial cell sheet using chitosan/polycaprolactone blend membranes. Colloids Surf. B. Biointerfaces 2014; 116: 403-10.

[7]

He Q., Ao Q., Gong Y. et al. Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J. Mater. Sci. Mater. Med. 2011; 22(12): 2791-802.

[8]

Zhou M., Qiao W., Liu Z. et al. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial

[9]

Wang H., Zhou J., Liu Z. et al. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J. Cell. Mol. Med. 2010; 14(5): 1044-55.

[10]

Захарова И.С., Живень М.К., Саая Ш.Б. и др. Разработка клеточных технологий для создания клеточно-наполненных сосудистых трансплантатов. Патология кровообращения и кардиохирургия 2015; 19(4-2): 43-54.

[11]

Coimbra P., Ferreira P., de Sousa H.C. et al. Preparation and chemical and biological characterization of a pectin/chitosan polyelectrolyte complex scaffold for possible bone tissue engineering applications. Int. J. Biol. Macromol. 2011; 48(1): 112-8.

[12]

Thuaksuban N., Nuntanaranont T., Pattanachot W. et al. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomed. Mater. 2011; 6(1): 015009.

[13]

Thuaksuban N., Nuntanaranont T., Suttapreyasri S. et al. Biomechanical properties of novel biodegradable poly e-caprolactone-chitosan scaffolds. J. Investig. Clin. Dent. 2013; 4(1): 26-33.

[14]

Yang W., Fu J., Wang D. et al. Study on chitosan/ polycaprolactone blending vascular scaffolds by electrospinning. J. Biomed. Nanotechnol. 2010; 6(3): 254-9.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/