Biological activity comparative evaluation of the gene-activated bone substitutes made of octacalcium PHOSPHATE AND PLASMID DNA CARRYING VEGF AND SDF GENES: PART 1 - IN VITRO
I. Y Bozo , K. S Maiorova , A. Y Drobyshev , S. I Rozhkov , G. A Volozhin , I. I Eremin , V. S Komlev , I. V Smirnov , A. A Rizvanov , A. A Isaev , V. K Popov , R. V Deev
Genes & Cells ›› 2016, Vol. 11 ›› Issue (4) : 34 -42.
Biological activity comparative evaluation of the gene-activated bone substitutes made of octacalcium PHOSPHATE AND PLASMID DNA CARRYING VEGF AND SDF GENES: PART 1 - IN VITRO
High need for effective bone substitutes and drawbacks of the materials approved for clinical use determine the increasing activity of biomedical research in this area. We have developed gene-activated bone substitutes consisting of a scaffold based on octacalcium phosphate (OCP) and one of the two variants of plasmid DNA carrying either a gene for vascular endothelial growth factor (VEGF) or two genes encoding VEGF and stromal derived factor-1а (SDF-1a). The aim of the study was to evaluate the cytotoxicity of the gene-activated materials and their components, as well as biological activity in vitro. We found that both OCP and gene-activated bone substitutes did not have any cytotoxicity, but reduced the proliferative activity of human bone marrow-derived multipotent mesenchymal stromal cells: material with doublegene construct decreased cell culture doubling rate of 24.3% more compared with the material carrying plasmid DNA encoding only VEGF. Both gene-activated materials led to an increase in therapeutic genes mRNA levels, but the material with double-gene system enhanced VEGF protein production greater. Thus, the gene-activated bone substitutes characterized by the absence of cytotoxic properties and possessed a specific activity increasing expression of the therapeutic genes. However, further studies are needed to detail the identified characteristics and assess the feasibility of the defined biological action in vivo. свойств и обладали специфической активностью в виде увеличения экспрессии терапевтических генов. Однако дальнейшие исследования необходимы для детализации выявленных особенностей и оценки реализуемости биологического действия in vivo.
gene-activated bone substitute / octacalcium phosphate / plasmid DNA / vascular endothelial growth factor
| [1] |
Garcia-Gareta E., Coathup M.J., Blunn G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015; 81: 112-21. |
| [2] |
Deev R.V., Drobyshev A.Y., Bozo I.Y. et al. Ordinary and activated bone grafts: applied classification and the main features. Biomed Res Int. 2015; 2015: 365050. |
| [3] |
Evans C.H. Gene delivery to bone. Adv. Drug Deliv. Rev. 2012; 64(12): 1331-40. |
| [4] |
Keeney M., van den Beucken J.J., van der Kraan P.M. et al. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials 2010; 31(10): 2893-902. |
| [5] |
Гололобов В.Г., Дедух Н.В., Деев Р.В. Скелетные ткани и органы. В кн.: Руководство по гистологии, 2 издание. Т.1. 201 1 ; СПб: СпецЛит. С. 238-322. |
| [6] |
Komlev V.S., Barinov S.M., Bozo I.I. et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behaviour. ACS Appl. Mater. Interfaces 2014; 6(19): 16610-20. |
| [7] |
Marquez-Curtis L.A., Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/ CXCR4 axis. Biomed. Res. Int. 2013; 2013: 561098. |
| [8] |
Niederberger E., Geisslinger G. Proteomics and NF-kB: an update. Expert Rev. Proteomics 2013; 10(2): 189-204 |
| [9] |
Deev R., Plaksa I., Bozo I. et al. Results of an international postmarketing surveillance study of pl-VEGF165 safety and efficacy in 210 patients with peripheral arterial disease. Am. J. Cardiovasc. Drugs. 2017 Jan 3. doi: 10.1007/s40256-016-0210-3. [Epub ahead of print] |
| [10] |
Deev R.V., Bozo I.Y., Mzhavanadze N.D. et al. pCMV-vegf165 intramuscular gene transfer is an effective method of treatment for patients with chronic lower limb ischemia. J. Cardiovasc. Pharmacol. Ther. 2015; 20(5): 473-82. |
| [11] |
Ризванов А.А., Соловьева В.В., Салафутдинов И.И. и др. Кодон-оптимизированные последовательности фармацевтическая композиция для восстановления кровеносных сосудов. Приоритет от 18.06.2014. Патент РФ №2557385 от 24.06.2015. 1 2. Исаев А.А., Киселев С.Л., Деев Р.В. и др. Биокомпозит для обеспечения восстановительных процессов после повреждения у млекопитающего, способ его получения (варианты) и применения. Приоритет от 29.1 2.201 1. Патент РФ №251 9326 от 1 4 апреля 2014, патент Украины №112450 от 12.09.2016. |
| [12] |
Дробышев А.Ю., Рубина К.А., Сысоева В.Ю. и др. Клиническое исследование применения тканеинженерной конструкции на основе аутологичных стромальных клеток из жировой ткани у пациентов с дефицитом костной ткани в области альвеолярного отростка верхней челюсти и альвеолярной части нижней челюсти. Вестник экспериментальной и клинической хирургии 2011; IV(4): 764-72. |
| [13] |
Гололобов В.Г., Дедух Н.В., Деев Р.В. Скелетные ткани и органы. В кн.: Руководство по гистологии, 2 издание. Т.1. 201 1 ; СПб: СпецЛит. С. 238-322. |
| [14] |
Зорин В.Л., Зорина А.И., Еремин И.И. и др. Сравнительный анализ остеогенного потенциала мультипотентных мезенхимальных стромальных клеток слизистой оболочки полости рта и костного мозга. Клеточная трансплантология и тканевая инженерия 201 4; IX(1): 50-7. 1 5. Деев Р.В., Дробышев А. Ю., Бозо И.Я. и др. Создание и оценка биологического действия ген-активированного остеопластического материала, несущего ген VEGF человека. Клеточная трансплантология и тканевая инженерия 2013; 8(3): 78-85. |
| [15] |
Бозо И.Я., Деев Р.В., Дробышев А.Ю. и др. Эффективность ген-активированного остеопластического материала на основе октакальциевого фосфата и плазмидной ДНК с геном vegf в восполнении «критических» костных дефектов. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2015; 1: 35-42. |
| [16] |
Bozo I.Y., Deev R.V., Drobyshev A.Y. et al. World's first clinical case of gene-activated bone substitute application. Case Reports in Dentistry 2016; 2016: 8648949. |
| [17] |
Feichtinger G.A., Hofmann A.T., Slezak P. et al. Sonoporation increases therapeutic efficacy of inducible and constitutive BMP2/7 in vivo gene delivery. Hum. Gene Ther. Methods. 2014; 25(1): 57-71. |
| [18] |
Liu J.Z., Hu Y.Y., Ji Z.L. Co-expression of human bone morphogenetic protein-2 and osteoprotegerin in myoblast C2C12. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2003; 17(1): 1-4. |
| [19] |
Yang L., Zhang Y., Dong R. et al. Effects of adenoviral-mediated coexpression of bone morphogenetic protein-7 and insulin-like growth factor-1 on human periodontal ligament cells. J. Periodontal. Res. 2010; 45(4): 532-40. |
| [20] |
Amable P.R., Teixeira M.V., Carias R.B. et al. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Res. Ther. 2014; 5(2): 53. |
| [21] |
Berendsen A.D., Olsen B.R. How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J. Histochem. Cytochem. 2014; 62(2): 103-8. |
| [22] |
Liu Y., Berendsen A.D., Jia S. et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J. Clin. Invest. 2012; 122(9): 3101-13. |
| [23] |
Grunewald M, Avraham I, Dor Y et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006; 124(1): 175-89. |
| [24] |
Hong X., Jiang F., Kalkanis S.N. et al. SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett. 2006; 236(1): 39-45. |
| [25] |
Graham F.L., van der Eb AJ. Transformation of rat cells by DNA of human adenovirus 5. Virology 1973; 54(2):536-9. |
Eco-Vector
/
| 〈 |
|
〉 |