Tryptophanyl-tRNA synthase gene expression as genetic marker of the athletes’ overtraining

M. K Nurbekov , A. A Elov , A. B Il'in , M. Y Ibragimova , R. I Zhdanov

Genes & Cells ›› 2015, Vol. 10 ›› Issue (3) : 88 -93.

PDF
Genes & Cells ›› 2015, Vol. 10 ›› Issue (3) : 88 -93. DOI: 10.23868/gc120500
Articles
research-article

Tryptophanyl-tRNA synthase gene expression as genetic marker of the athletes’ overtraining

Author information +
History +
PDF

Abstract

In connection with a necessity the development of effective biomarkers of sportsman physical and overtraining (distress) states, the study of a role of triptophanyl-tRNA synthase, TRSase, and corresponding gene in process is of special interest. Preliminary estimate of specificity and level of mRNA expression of TRSase gene is carried out using method 1: scanning of gels with an image of separation of polymerase chain reaction PCR products to detect quantitatively the content of the mRNA and/or cDNA copies compare, in parallel, to DNA quantity markers to compose a calibrating curve. Final estimation of TRSase gene expression is carries out by real time PCR (method 2) using calibrating curve (technique 1) and relative quantitative estimation of a number of specific mRNA copies with reference gene involved (technique 2). The level of TRSase gene expression represents a criterium of organism response, which is adequate to a stress strength (overtraining) It is proposed to detect the overtraining state at sportsmen using registrating an increased TRSase gene expression. In our pilot project, the distress overtraining state is determined as increased level of specific TRSase gene expression in 1,45 fold higher at the samples under the study compare to control samples. The TRSase mRNA expression before training is increased by 1 2-1 6 fold compare to one after training

Keywords

sportsman overtraining / eustress / distress / triptophanyl-tRNA synthase gene / an increase in TRSase gene expression as overtraining biomarker

Cite this article

Download citation ▾
M. K Nurbekov, A. A Elov, A. B Il'in, M. Y Ibragimova, R. I Zhdanov. Tryptophanyl-tRNA synthase gene expression as genetic marker of the athletes’ overtraining. Genes & Cells, 2015, 10(3): 88-93 DOI:10.23868/gc120500

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Paracosta E., Gleeson M. Effects of intensity of training and taper on immune function. Rev. Bras. Educ. Fis. Esporte (Sao Paulo) 2013; 27(1): 159-76.

[2]

Ahmetov I.I., Fedotovskaya O.N. Current progress in sports genomics. Advances in Clinical Chemistry 2015; http://dx. doi. org/10. 1016/bs. acc. 2015. 03. 003.

[3]

Kupriyanov R.V., Zhdanov R.I. Eustress concept: problems and outlooks. World J. Med. Sci. 2014; 11(2): 179-85.

[4]

Куприянов Р.В., Жданов Р.И. Стресс и аллостаз: проблемы, перспективы и взаимосвязь. Журн. высшей нервн. деятел. им. И. П. Павлова. 2014; 64(1): 21-31.

[5]

Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskeletal Disorders 2012; 13: 218-31.

[6]

Ceci R., Valls M.R., Duranti G. et. al. Oxidative stress responses to a graded maximal exercise test in older adults following explosivetype resistance training. Redox Biol. 2014; 2: 65-72.

[7]

Davydov D.M., Zhdanov R.I., Dvoenosov V.G. et al. Resilence to orthostasis and haemorrhage: A pilot study of common genetic and conditioning factors. Sci. Rep. Nature PG 2015;5: 10703.

[8]

Nurbekov M.K., Kisselev L.L., Favorova O.O. et al. Bovine tryptophanyl-tRNA synthetase - a zinc metalloenzyme. Eur. J. Biochem. 1981; 120 (3): 511-17.

[9]

Favorova O.O., Zargarova T. A., Rukosuyev V. S. et al. Molecular and cellular studies of tryptophanyl-tRNA synthetases using monoclonal antibodies. Remarkable variations in the content of tryptophanyl-tRNA synthetase in the pancreas of different mammals. Eur. J. Biochem., 1989; 184: 583-88.

[10]

Nurbekov M.K., Rasulov M.M., Voronkov M.G. et al. The complex of zinc bis-(2-methylphenoxyacetate) with tris-2(hydroxyethyl) amine as an activator of synthesis of total tryptophanyl-tRNA synthetase. Doklady. Biochemistry and biophysics. 2012; 444: 147-8.

[11]

Guo M., Schimmel P., Xiang-Lei Yang X-L. Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett. 2010; 584 (2): 434-42.

[12]

Merkulova T., Kovaleva G., Kisselev L. P1,p3-bis(5'-adenosyl) triphosphate (Ap3A) as a substrate and a product of mammalian tryptophanyl-tRNA synthetase. FEBS Lett. 1994; 350: 287-90.

[13]

Нурбеков М.К., Елов А.А., Жданов Р.И. Регулируемый эндогенный протеолиз как важный фактор переключения триптофанил-т-РНК-синтетазы от канонической аминоацилирующей активности к неканоническим регулируемым функциям Гены и клетки 2014; IX: 223-9

[14]

Ghatak G., Muthukumaran R.B., Nachimuthu S.K. A Simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J. Biomol. Tech. 2013; 24(4): 224-31.

[15]

Протокол выделения препаратов РНК и ДНК с помощью набора наночастиц фирмы Силекс http://www.sileks.com/ru/download/DNA_Isolation_with_MP_ from_Swabs. pdf.

[16]

Протокол выделения РНК с помощью набора «Yellow Solve» фирмы Силекс: http://sileks. com/ru/production. php?folder=86.

[17]

Протокол ПЦР определения: Hallmarks of an Optimized qPCR Assay

[18]

Gleeson M. Biochemical and immunological markers of overtraining. J. Sports Sci. Med. 2002; 2: 31-41.

[19]

Park S.G., Schimmel P., Kim S. Aminoacyl tRNA synthetases and their connections to disease. PNAS USA 2008; 105(32): 11043-9.

[20]

Sajish M., Schimmel P. A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Natiure 2015; 519: 370-3

[21]

Yao P., Fox P.L. Aminoacyl-tRNA synthetases in medicine and disease. EMBO Mol Med. 2013; 5(3): 332-43.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/