Modification of polycaprolactone scaffolds with vascular endothelial growth factors for potential application in development of tissue engineered vascular grafts

V. V Sevostyanova , A. S Golovkin , L. V Antonova , T. V Glushkova , O. L Barbarash , L. S Barbarash

Genes & Cells ›› 2015, Vol. 10 ›› Issue (1) : 91 -97.

PDF
Genes & Cells ›› 2015, Vol. 10 ›› Issue (1) : 91 -97. DOI: 10.23868/gc120499
Articles
research-article

Modification of polycaprolactone scaffolds with vascular endothelial growth factors for potential application in development of tissue engineered vascular grafts

Author information +
History +
PDF

Abstract

In this study, we investigated a biological activity of nonwoven polycaprolactone scaffolds for controlled delivery of vascular endothelial growth factors. The tube scaffolds with incorporated vascular endothelial growth factors were fabricated by method of electrospinning. The polycaprolactone scaffold containing growth factor provided a morphology similar to the native extracellular matrix. The sustained release of biologically active growth factor from scaffold was observed for 80 days The assessment of adhesion and proliferation of multipotent mesenchymal stem cells and endothelial cells on the material surface showed that scaffolds with vascular endothelial growth factors are able to maintain the cellular activity. Results of study demonstrated that incorporated growth factors provide active proliferation of endothelial cells on porous material and cells penetration inside the scaffold. This approach to the creation of a biologically active environment in the scaffold has a great potential in the development of grafts for blood vessels regeneration

Keywords

polycaprolactone / vascular endothelial growth factor / electrospinning / polymeric scaffold

Cite this article

Download citation ▾
V. V Sevostyanova, A. S Golovkin, L. V Antonova, T. V Glushkova, O. L Barbarash, L. S Barbarash. Modification of polycaprolactone scaffolds with vascular endothelial growth factors for potential application in development of tissue engineered vascular grafts. Genes & Cells, 2015, 10(1): 91-97 DOI:10.23868/gc120499

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Taggart D. P. current status of arterial grafts for coronary artery bypass grafting. Ann. cardiothorac. Surg. 2013; 2 t4): 427-30.

[2]

Бокерия Л.А., Беришвили И. И., Солнышков Л. Э. и др. Повторные операции у больных ишемической болезнью сердца - современное состояние проблемы. Бюллетень НЦССХ им. Бакулева РАМН. 2009; 10(3): 5-27.

[3]

Taylor L. M. , Edwards J. M., Porter J. M. Present status of reversed vein bypass grafting: five-year results of modern series J Vasc. Surg. 1990; 11(2): 193-205.

[4]

Iwasaki K. , Kojima K., Kodama S. et al. Bioengineered three-layered robust and elastic artery using hemodynamicallyequivalent pulsatile bioreactor. circulation 2008; 118(14, Sup. ): S52-7.

[5]

Pektok E. , Nottelet B. , Tille J. et al. Degradation and healing characteristics of small-diameter poly(e-caprolactone) vascular grafts in the rat systemic arterial circulation. circulation 2008; 118(24): 2563-70

[6]

Wu W., Allen R., Wang Y. et al. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat. Med. 2012; 18(7): 1148-53.

[7]

De Valence S. , Tille J. , Mugnai D. et al. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 2012; 33(1): 38-47.

[8]

Bates D. O. Vascular endothelial growth factors and vascular permeability. cardiovasc. Res. 2010; 87(2): 262-71.

[9]

Hiroyuki T. , Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. clin. Science. 2005; 109(3): 227-41.

[10]

Misteli H. , Wolff T. , Fuglistaler P. et al. High-throughput flow cytometry purification of transduced progenitors expressing defined levels of vascular endothelial growth factor induces controlled angiogenesis in vivo. Stem cells 2010; 11(28): 611-9.

[11]

Ahn K. , Pan S. , Beningo K. et al. A permanent human cell line (EA. hy926) preserves the characteristics of endothelin converting enzyme from primary human umbilical vein endothelial cells Life Sci 1995; 56(26): 2331-41.

[12]

Yang X., Luo P., Yang B. et al. Antiangiogenesis response of endothelial cells to the antitumour drug 10-methoxy-9-nitrocamptothecin. Pharmacol. Res. 2006; 54(5): 334-40.

[13]

Owen S. C. , Shoichet M. S. Design of three-dimensional biomimetic scaffolds J of biomed Mater Resear A 2010; 94a(4): 1321-31.

[14]

Lee K. , Silva E. A. , Mo D. J. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments J. R. Soc. Interface 2011; 8(55): 153-70.

[15]

Zhang Y. Z. , Su B., Venugopa J. et al. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int. J. Nanomedicine 2007; 2(4): 623-38.

[16]

Rigogliusoa S., Paviab F., Brucatob V. et al. Use of modified 3D scaffolds to improve cell adhesion and drive desired cell responses chemical engineering transactions 2012; 27: 415-20.

[17]

Rim N. G. , Shin C. S. , Shin H current approaches to electrospun nanofibers for tissue engineering Biomed Mater 2013; 8(1): 1-14.

[18]

Mijovic B. , Trcin M. , Agic A. et al. Study on cell adhesion detection onto biodegradable electrospun PcL scaffolds J Fiber Bioengin. Inform. 2012; 5(1): 33-40.

[19]

Naito Y. , Shinoka T. , Duncan D. et al. Vascular tissue engineering: towards the next generation vascular grafts Adv Drug Deliv. Rev. 2011; 63(4-5): 312-23.

[20]

O'cearbhaill E. D. , Murphy M. , Barry F. et al. Behaviour of human mesenchymal stem cells in fibrin-based vascular tissue engineering constructs. Ann. Biomed. Eng. 2010; 38(3): 649-57

[21]

Ball S. G. , Shuttleworth C. A., Kielty C. M. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors J cell Biol 2007; 177(3); 489-500

[22]

Kosorn W. , Thavornyutikarn B. , Uppanan P. Surface modification of polycaprolactone scaffolds by plasma treatment for chondrocyte culture. IPCBEE. 2012; 43: 44-8.

[23]

Ball S. G. , Shuttleworth C. A. , Kielty C. M. Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J. cell. Mol. Med. 2007; 11(5): 1012-30.

[24]

Dunn J. , Chan W. , Cristini V. et al. Analysis of cell growth in three-dimensional scaffolds. Tissue Eng. 2006; 12(4): 705-16.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/