Conduit based on poly(ε-caprolactone) filled with fibrin-based hydrogel with mesenchymal stromal cells for peripheral nerve defect reconstitution
Y. O Mukhamedshina , R. F Masgutov , G. A Masgutova , M. N Zuravleva , A. P Shulman , L. R Galieva , A. F Rogozin , Y. A Chelyshev , A. A Rizvanov
Genes & Cells ›› 2015, Vol. 10 ›› Issue (3) : 83 -87.
Conduit based on poly(ε-caprolactone) filled with fibrin-based hydrogel with mesenchymal stromal cells for peripheral nerve defect reconstitution
In this study we used promising therapeutic strategy for stimulation of peripheral nerve regeneration - implantation of poly(ε-caprolactone) nerve conduit filled with fibrin hydrogel Tissucol in combination with mesenchymal stem cells. In vitro studies showed that the coating by Tissucol of poly(ε-caprolactone) substrate promotes cell proliferation. In vivo results of peripheral nerve defect reconstitution in rats using the conduit based on poly (ε-caprolactone) filled with fibrin hydrogel with mesenchymal stem cells confirmed the effectiveness of the proposed approach
tubulation / poly(ε-caprolactone) / multipotent mesenchymal stromal cells / fibrin glue
| [1] |
Lee S.K., Wolfe S.W. Peripheral nerve injury and repair. J. Am. Acad. Orthop. Surg. 2000; 8(4): 243-52. |
| [2] |
Navarro X. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur. J. Neurosci. Epub ahead of print. 2015. |
| [3] |
Николаев С.И., Галлямов А.Р., Мамин Г.В. и др. Кондуит нерва на основе поли(є-капролактона) и локальная доставка генов vegf и fgf2 стимулируют нейрорегенерацию Клеточные технологии в биологии и медицине 2014; 1: 44-49 |
| [4] |
Chang C.J. The effect of pulse-released nerve growth factor from genipin-crosslinked gelatin in schwann cell-seeded polycaprolactone conduits on large-gap peripheral nerve regeneration. Tissue Eng. Part A. 2009; 15(3): 547-57. |
| [5] |
Chiono V., Vozzi G., Vozzi F. et al. Melt-extruded guides for peripheral nerve regeneration. Part I: poly(epsilon-caprolactone). Biomed. Microdevices 2009; 11(5): 1037-50. |
| [6] |
Schnell E., Klinkhammer K., Balzer S. et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 2007; 28(19): 3012-25. |
| [7] |
Frattini F., Lopes F.R., Almeida F.M. et al. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tissue Eng. Part A. 2012; 18(19-20): 2030-9. |
| [8] |
Ribeiro-Resende V.T., Pimentel-Coelho P.M., Mesentier-Louro L.A. et al. Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience 2009; 159(2): 540-9. |
| [9] |
Miri Bonjar M.R., Maghsoudi H., Samnia R. et al. Efficacy of fibrin glue on seroma formation after breast surgery. Int. J. Breast Cancer. 2012; 2012: 643132. |
| [10] |
Tokuishi K., Yamamoto S., Anami K. et al. Successful application of subcutaneous adipose tissue with fibrin glue in conservative treatment of tracheobronchial rupture. Ann. Thorac. Surg. 2012; 94: 1726-9. |
| [11] |
Marconi S., Castiglione G., Turano E. et al. Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng. 2012; 18(11-12): 1264-72. |
| [12] |
Azari M.F. , Mathias L., Ozturk E. et al. Mesenchymal stem cells for treatment of CNS injury. Curr. Neuropharmacol. 2010; 8: 316-23. |
| [13] |
Chidgey A.P., Layton D., Trounson A. et al. Tolerance strategies for stem-cell-based therapies. Nature 2008; 453: 330-7. |
| [14] |
Shi Y., Zhou L., Tian J. et al. Transplantation of neural stem cells overexpressing glia-derived neurotrophic factor promotes facial nerve regeneration. Acta Otolaryngol. 2009; 129(8): 906-14. |
| [15] |
Cheng F.C., Tai M.H., Sheu M.L. et al. Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J. Neurosurg. 2010; 112(4): 868-79. |
| [16] |
Oliveira J.T., Almeida F.M., Biancalana A. et al. Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, prevent decrease of creatine phosphokinase levels in muscle, and improve functional recovery in mice. Neuroscience 2010; 170(4): 1295-303. |
| [17] |
Катина М.Н., Гайфуллина Р.Ф., Хаятова З.Г. и др. Выделение, культивирование и дифференцировка мультипотентных мезенхимных стромальных клеток из жировой ткани крыс Rattus norvegicus и хомяков Mesocricetus auratus. КТТИ 2012; 7(3): 82-7. |
| [18] |
Соловьева В.В., Исаев А.А., Генкин Д.Д. и др. Влияние рекомбинантного гистона Н1 3 на эффективность лентивирусной трансдукции клеток человека in vitro. КТТИ 2012; 3(7): 151-4. |
| [19] |
Masgutov R.F., Masgutova G.A., Zhuravleva M.N. et al. Human adipose-derived stem cells stimulate neuroregeneration. Clin. Exp. Med. Epub ahead of print 2015. DOI: 10. 1007/s10238-015-0364-3 |
| [20] |
Старобинец М.Х., Волкова Л.Д. Особенности функционирования сегментарного аппарата спинного мозга человека при различных формах нарушения нисходящего контроля Физиология человека 1988; 14(2): 237-47. |
Eco-Vector
/
| 〈 |
|
〉 |