Prospects of EPR spectroscopy to the intensity of free radical processes evaluation in tissue-engineering esophagus and diaphragm

E. A Gubareva , A. A Basov , E. V Kuevda , A. S Sotnichenko , S. S Dzhimak , S. N Bolotin , I. V Gilevich , K. A Danilenko , I. S Gumenyuk , V. A Markushin , V. A Porhanov , P. Macchiarini

Genes & Cells ›› 2015, Vol. 10 ›› Issue (3) : 33 -38.

PDF
Genes & Cells ›› 2015, Vol. 10 ›› Issue (3) : 33 -38. DOI: 10.23868/gc120471
Articles
research-article

Prospects of EPR spectroscopy to the intensity of free radical processes evaluation in tissue-engineering esophagus and diaphragm

Author information +
History +
PDF

Abstract

Tissue engineering can become an alternative option of treatment which is focused on restoration, replacement and regeneration of cells, tissues and failed organs. One of the tasks of regenerative medicine is creation of biological or artificial scaffolds reproducing structure of native tissue and possessing the required physical, chemical and mechanical properties for ensuring cell adhesion and formation of three-dimensional tissue as a result of recellularization with autologous cells. Biological scaffolds must be decellularized to become nonimmunogenic; however this process has to be aimed at the maximum preservation of biochemical composition, morphological structure, and maintenance of the biomechanical properties of the obtained extracellular matrix similar to the properties of native tissue One of the main issues is development of criteria of quality of the obtained scaffolds. In this work the spectroscopy EPR (electron paramagnetic resonance) method is used as one of promising biophysical methods of evaluation of decellularization EPR-spectroscopy applicability is also shown for evaluation of preservation of native organs at a cryopreservation which might already be the first stage of decellularization that is indirectly confirmed by the conducted researches

Keywords

tissue engineering / oesophagus / diaphragm / decellularization / extracellular matrix / biological scaffold / extracellular matrices proteins / EPR spectroscopy

Cite this article

Download citation ▾
E. A Gubareva, A. A Basov, E. V Kuevda, A. S Sotnichenko, S. S Dzhimak, S. N Bolotin, I. V Gilevich, K. A Danilenko, I. S Gumenyuk, V. A Markushin, V. A Porhanov, P. Macchiarini. Prospects of EPR spectroscopy to the intensity of free radical processes evaluation in tissue-engineering esophagus and diaphragm. Genes & Cells, 2015, 10(3): 33-38 DOI:10.23868/gc120471

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WHO | World Health Statistics 2011. World Health Organization; [cited 2015 Dec 23]; Available from: http://www. who. int/gho/publications/world_health_statistics/2011/en/

[2]

Fuchs J.R., Nasseri B.A., Vacanti J.P. Tissue engineering: a 21st century solution to surgical reconstruction. Ann. Thorac. Surg. 2001; 72: 577-91.

[3]

McIntire L.V. WTEC Panel Report on Tissue Engineering Research. Academic Press; 2003 [cited 2015 Dec 23]; 3. Available from: http://www. mendeley. com/research/wtec-panel-report-tissue-engineering-research/

[4]

Vacanti J.P., Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999; 354: S32-4.

[5]

Skalak R., Fox C., editors. NSF Workshop, UCLA Symposia on Molecular and Cellular Biology. 1988.

[6]

Saxena A.K. Tissue engineering: Present concepts and strategies. J. Indian Assoc. Pediatr. Surg. Medknow 2005; 10(1): 14.

[7]

Atala A. Tissue engineering, stem cells and cloning: Applications in Urology. Contemp. Urol. 2002; 14: 40-57.

[8]

Sjöqvist S., Jungebluth P., Lim M.L. et al. Experimental orthotopic transplantation of a tissue-engineered oesophagus in rats. Nat. Commun. 2014; 5: 3562. doi: 10. 1038/ncomms4562.

[9]

Губарева Е.А., Сьоквист С., Сотниченко А.С. и др. Децеллюляризация пищевода низших приматов. Гены и клетки 2014; 9(4): 64-9.

[10]

Губарева Е.А., Сотниченко А.С., Гилевич И.В., Маккиарини П. Морфологическая оценка качества децеллюляризации сердца и диафрагмы крыс. Клеточная трансплантология и тканевая инженерия 2012; 7(4): 38-45.

[11]

Gubareva E.A., Sjöqvist S., Gilevich I.V. et al. Orthotopic transplantation of a tissue engineered diaphragm in rats. Biomaterials 2016; 77: 320-35.

[12]

Baryshev M.G., Basov A.A., Bolotin S.N. et al. NMR, EPR, and mass spectroscopy estimates of the antiradical activity of water with modified isotope composition. Bull. Russ. Acad. Sci. Phys. 2012; 76(12): 1349-52.

[13]

Basov A.A., Bykov I.M., Baryshev M.G. et al. Determination of deuterium concentration in foods and influence of water with modified isotopic composition on oxidation parameters and heavy hydrogen isotopes content in experimental animals. Vopr. Pitan. 2014; 83(5): 43-50

[14]

Gubareva E., Kuevda E., Basov A. et al. EPR spectroscopy for the decellularization process evaluation of bioengineered intrathoracic organs; Reg. Med. 2015; 10(07s): 282.

[15]

Ott H.C., Matthiesen T.S., Goh S.K. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 2008;14(2): 213-21.

[16]

Badylak S.F., Taylor D., Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 2011; 13: 27-53.

[17]

Sellaro T.L., Ravindra A.K., Stolz D. B. et al. Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds. Tissue Eng. 2007; 13(9): 2301-10.

[18]

Ott H.C., Taylor D., inventors; Regents of the University of Minnesota, assignee. Decellularization and recellularization of organs and tissues. US patent 20090202977. 2009 Aug 13.

[19]

Wainwright J. M., Czajka C.A., Patel U.B. et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. Part C Methods 2009; 16(3): 525-32.

[20]

Сотниченко А.С., Губарева Е.А., Гилевич И.В. и др. Децеллюляризированный матрикс сердца крысы как основа для создания тканеинженерного сердца. Гены и клетки 2013; 8(3): 86-94.

[21]

Владимиров Ю.А. Кинетическая хемилюминесценция как метод изучения реакции свободных радикалов. Биофизика клетки 2011; 56(6): 1081-90.

[22]

Badylak S.F. The extracellular matrix as a biologic scaffold material. Biomaterials 2007; 28(25): 3587-93.

[23]

Zhang Q., Raoof M., Chen Y. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464(7285): 104-7.

[24]

Куевда Е.В., Губарева Е.А., Сотниченко А.С. и др. Перспективы создания тканеинженерных легких с использованием методов регенеративной медицины Гены и клетки 2015; 10(1): 35-40

[25]

Crapo P.M., Gilbert T.W., Badylak S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32: 3233-43

[26]

Gilbert T.W. Strategies for tissue and organ decellularization. J. Cell Biochem. 2012; 113(7): 2217-22.

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/