Characteristics of neoosteogenesis in the model of critical defect of rats' parietal bone using traditional and three-dimensional morphometry
A. V Vasilyev , A. V Volkov , G. B Bolshakova , D. V Goldstein
Genes & Cells ›› 2014, Vol. 9 ›› Issue (4) : 121 -127.
Characteristics of neoosteogenesis in the model of critical defect of rats' parietal bone using traditional and three-dimensional morphometry
We modified the techniques of 3D-morphometry using histological sections based on computer-generated ЗЮ reconstruction and mathematical modeling. We compared the results of measurements obtained with the use of above methods and those taken with traditional methods based on the analysis of X-ray pictures. It was shown that the methods of 3D-morphometry we developed provided more precise evaluation of the size of newly formed bone tissue. Basis for technical recommendations to perform the 3D-morphometry at every stage, from surgery to morphological analysis, were proposed.
3D-modeling / mathematical modeling / regeneration / morphometry / bone tissue
| [1] |
Полежаев Л.В. Регенерация путём индукции. Москва: Медицина; 1977. |
| [2] |
Pellegrini G., Seol Y.J., Gruber R. et al. Pre-clinical models for oral and periodontal reconstructive therapies. J. Dent. Res. 2009; 88(12): 1065-76. |
| [3] |
Lee J.A., Ku Y., Rhyu I.C. et al. Effects of fibrin-binding oligopeptide on osteopromotion in rabbit calvarial defects. J. Periodontal Implant Sci. 2010; 40(5): 211-9. |
| [4] |
Кулаков А.А., Григорьян А.С., Киселева е.В. и др. устранение критических костных дефектов с помощью биоинженерной конструкции на нерезорбируемой полимерной основе с использованием аутогенных мультипотентныхстромальных клеток из жировой ткани. Стоматология 2010; 3: 9-12. |
| [5] |
Takagi K., Urist M.R. The reaction of the dura to bone morphogenetic protein (BMP) in repair of skull defects. Ann. Surg. 1982; 196(1): 100-9. |
| [6] |
Parfitt A.M., Drezner M.K., Glorieux F.H. et al. Bone histo-morphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 1987; 2(6): 595-610. |
| [7] |
Dempster D.W., Compston J.E., Drezner M.K. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013; 28(1): 2-17. |
| [8] |
Lim S.C., Lee M.J., Yeo H.H. Effects of various implant materials on regeneration of calvarial defects in rats. Pathol. Int. 2000; 50 (8): 594-602. |
| [9] |
Aydin O., Attila G., 0ogan A. et al. The Effects of Methyl Methacrylate on nasal cavity, lung, and antioxidant system (an experimental inhalation study). Toxicol. Pathol. 2002; 30(3): 350-6. |
| [10] |
Leggat P.A., Kedjarune U. Toxicity of methyl methacrylate in dentistry. Int. 0ent. J. 2003; 53(3): 126-31. |
| [11] |
Spicer P.P., Kretlow J.0., Young S. et al. Evaluation of bone regeneration using the rat critical size calvarial defect. Nat. Prot. 2012; 7(10): 1918-29. |
| [12] |
Montjovent M.O., Mathieu L., Schmoekel H. et al. Repair of critical size defects in the rat cranium using ceramic-reinforced PLA scaffolds obtained by supercritical gas foaming. J. Biomed. Mat. Res. 2007; 83: 41-51. |
| [13] |
Sun T.C., Mori S., Roper J. et al. 0o different fluorochrome labels give equivalent histomorphometric information? Bone 1992; 13(6): 443-6. |
| [14] |
Ревелл П.А. Патология кости. Москва: Медицина; 1993. |
| [15] |
Patel Z.S., Young S., Tabata Y. et al. 0ual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone 2008; 43(5): 931-40. |
| [16] |
Саркисов Д.С., Перов Ю.Л. Микроскопическая техника. Москва: Медицина; 1996. |
| [17] |
Волков А.В., Васильев А.В., Рачинская О.А. и др. Применение флуоресцентных меток для оценки регенерации костной ткани на модели критических дефектов теменных костей крыс с использованием адаптированного метода гистоморфометрии. Клиническая и эксперементальная морфология 2013; 2: 73-80. |
Eco-Vector
/
| 〈 |
|
〉 |