Test-system in vitro for screening of therapeutic drugs with IL-17A inhibitory activity
N. K Ossina , E. I Pugachev , I. A Kolyadenko , V. V Pryazhkina , E. G Shakurov , E. V Orlov , L. T Volova
Genes & Cells ›› 2021, Vol. 16 ›› Issue (1) : 43 -48.
Test-system in vitro for screening of therapeutic drugs with IL-17A inhibitory activity
To achieve greater clinical relevance of the newly discovered compounds, modern drug discovery requires disease-targeted assays based on human cells. The specific aim of this study was to design and develop a new cell-based assay for screening of compounds with IL-17A inhibitory activity. Human foreskin fibroblasts (HFF) were treated with IL-17A alone (experimental conditions I) or a mixture of IL-17A inhibitor netakimab and IL-17A (experimental conditions II). IL-17A - dependent production of inflammatory mediators IL-6, IL-8, MCP-1 was evaluated by ELISA (enzyme-linked immunosorbent assay). The study demonstrated the ability of HFF subcultured in vitro for a long time (>20 passages) to respond to IL-17A treatment by increased production of inflammatory cytokines IL-6, IL-8, MCP-1. Neutralization of IL-17A by netakimab (IL-17A inhibitor) resulted in a dose-dependent decrease of inflammatory cytokines production into cell growth medium. Thus, a new cell-based assay to evaluate the biological activity of Il-17A inhibitors has been developed and tested. The assay is based on the analysis of IL-17A-dependent production of inflammatory cytokines synthesized by human dermal fibroblasts. Netakimab has been shown to be a highly potent inhibitor of IL-17A.
Psoriasis / Fibroblasts / Cytokines / Interleukin-17A / Interleukin-8 / Interleukin-6 / Monocyte chemoattractant protein-1
| [1] |
Beringer A., Noack M., Miossec P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol. Med. 2016; 22(3): 230-41. |
| [2] |
Liang Y., Sarkar M.K., Tsoi L.C. et al. Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr. Opin. Immunol. 2017; 49: 1-8. |
| [3] |
Griffiths C.E., Barker J.N. Pathogenesis and clinical features of psoriasis. Lancet 2007; 370(9583): 263-71. |
| [4] |
Ettehadi P., Greaves M.W., Wallach D. et al. Elevated tumour necrosis factor-alpha (TNF-a) biological activity in psoriatic skin lesions. Clin. Exp. Immunol. 2008; 96(1): 146-51. |
| [5] |
Lee E., Trepicchio W.L., Oestreicher J.L. et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 2004; 199(1): 125-30. |
| [6] |
Onishi R.M., Gaffen S.L. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 2010; 129(3): 311-21. |
| [7] |
Coimbra S., Figueiredo A., Castro E. et al. The roles of cells and cytokines in the pathogenesis of psoriasis. Int. J. Dermatol. 2012; 51(4): 389-98. |
| [8] |
Martin D.A., Towne J.E., Kricorian G. et al. The emerging role of IL-17 in the pathogenesis of psoriasis: Preclinical and clinical findings. J. Invest. Dermatol. 2013; 133(1): 17-26. |
| [9] |
Mease P.J., Antoni C.E. Psoriatic arthritis treatment: biological response modifiers. Ann. Rheum. Dis. 2005; 64 Suppl 2: 78-82. |
| [10] |
Кубанов А.А., Бакулев А.Л., Самцов А.В. и др. Нетакимаб - новый ингибитор ИЛ-17А: результаты 12 недель клинического исследования III фазы BCD-085-7/PLANETA у пациентов со среднетяжелым и тяжелым вульгарным псориазом. Вестник дерматологии и венерологии 2019; 95(2): 15-28. |
| [11] |
Blauvelt A., Puig L., Chimenti S. et al. Biosimilars for psoriasis: clinical studies to determine similarity. Br.J. Dermatol. 2017; 177(1): 23-33. |
| [12] |
Horvath P., Aulner N., Bickle M. et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov. 2016; 15(11): 751-69. |
| [13] |
Eglen R., Gilchrist A., Reisine T. An overview of drug screening using primary and embryonic stem cells. Comb. Chem. High Throughput Screen. 2008; 11(7): 566-72. |
| [14] |
Dunne A., Jowett M., Rees S. Use of primary human cells in high-throughput screens. Methods Mol. Biol. 2009; 565: 239-57. |
| [15] |
Podgurskaya A.D., Tsvelaya V.A., Slotvitsky M.M. et al. The Use of iPSC-Derived Cardiomyocytes and Optical Mapping for Erythromycin Arrhythmogenicity Testing. Cardiovasc. Toxicol. 2019; 19(6): 518-28. |
| [16] |
Liang P., Lan F., Lee A.S. et al. Drug Screening Using a Library of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Disease Specific Patterns of Cardiotoxicity. Circulation 2013; 127(16): 1-29. |
| [17] |
Hunsberger J.G., Efthymiou A.G., Malik N. et al. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System. Stem Cells Dev. 2015; 24(16): 1852-64. |
| [18] |
Lago J.C., Puzzi M.B. The effect of aging in primary human dermal fibroblasts. PLoS One 2019; 14(7): 1-14 |
| [19] |
Зорина А.И., Бозо И.Я., Зорин В.Л. и др. Фибробласты дермы: особенности цитогенеза, цитофизиологии и возможности клинического применения. Клеточная трансплантология и тканевая инженерия 2011; VI(2): 15-26 |
| [20] |
Fang F., Ni K., Cai Y. et al. Biological characters of human dermal fibroblasts derived from foreskin of male infertile patients. Tissue Cell 2017; 49(1): 56-63. |
| [21] |
Wright J.F., Bennett F., Li B. et al. IL-17RA/IL-17RC Receptor Complex Cytokine Signals through the The Human IL-17F/IL-17A Heterodimeric. J. Immunol. Ref. 2008; 181: 2799-805. |
| [22] |
Debets R., Hegmans P.J.J., Deleuran M. et al. Expression of cytokines and their receptors by psoriatic fibroblasts I. Altered IL-6 synthesis. Cytokine 1996; 8(1): 70-9. |
| [23] |
Noack M., Beringer A., Miossec P. Additive or synergistic interactions between IL-17A or IL-17F and TNFa or IL-1 p depend on the cell type. Front. Immunol. 2019; 10: 1-12. |
| [24] |
Гринберг К.Н., Кухаренко В.И., Ляшко В.Н. и др. Культивирование фибробластов человека для диагностики наследственных болезней. В: Вахтин Ю.Б., Соминина А.А., редакторы. Методы культивирования клеток. Ленинград: Наука; 1987. c. 250-7. |
| [25] |
Gadagkar S.R., Call G.B. Computational tools for fitting the Hill equation to dose-response curves. J. Pharmacol. Toxicol. Methods 2015; 71: 68-76. |
| [26] |
Zaman G.J.R., de Roos J.A.D.M., Blomenrohr M. et al. Cryopre-served cells facilitate cell-based drug discovery. Drug Discov. Today 2007; 12(13-14): 521-6. |
| [27] |
Barygina V., Becatti M., Prignano F. et al. Fibroblasts to keratino-cytes redox signaling: The possible role of ROS in psoriatic plaque formation. Antioxidants 2019; 8(11): 1-20. |
| [28] |
Зорин В.Л., Зорина А.И., Петракова О.С. и др. Дермальные фибро-бласты для лечения дефектов кожи. Клеточная трансплантология и тканевая инженерия 2009; IV(4): 26-40. |
| [29] |
Werner S., Krieg T., Smola H. Keratinocyte-fibroblast interactions in wound healing. J. Invest. Dermatol. 2007; 127(5): 998-1008. |
| [30] |
Yao Z., Fanslow W.C., Seldin M.F. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 1995; 3(6): 811-21. |
| [31] |
Benedetti G., Miossec P. Interleukin 17 contributes to the chronicity of inflammatory diseases such as rheumatoid arthritis. Eur. J. Immunol. 2014; 44(2): 339-47. |
| [32] |
Behfar S., Hassanshahi G., Nazari A. et al. A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine 2018; 110: 226-31. |
| [33] |
Giustizieri M.L., Mascia F., Frezzolini A. et al. Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T. cell-derived cytokines. J. Allergy Clin. Immunol. 2001; 107 Suppl 5: 871-7. |
Eco-Vector
/
| 〈 |
|
〉 |