Immunotherapeutic approaches in the treatment of COVID-19
E. V Abakushina
Genes & Cells ›› 2020, Vol. 15 ›› Issue (4) : 19 -26.
Immunotherapeutic approaches in the treatment of COVID-19
The novel coronavirus SARS-CoV-2 has caused a life-threatening disease COVID-19 provoked a pandemic over the world. The effectual host immune response including innate and adaptive immunity against SARS-Cov-2 seems crucial to control and resolve the viral infection. However, the severity and outcome of the COVID-19 might be associated with the excessive production of pro-inflammatory cytokines "cytokine storm” leading to an acute respiratory distress syndrome. Regretfully, the exact immunophysiology and treatment, especially for the severe COVID-19, is still uncertain. Novel therapeutic strategies are urgently needed to eliminate the viral reservoir in the host. In this review, we described several potential strategies for immunotherapy to cure SARS-CoV-2 infection. This may provide clue of using immune therapy as combine treatment to prevent the patient develop into severe respiratory syndrome and largely reduced complications.
SARS-CoV-2 / Coronavirus disease 201 9 (COVID-1 9) / SARS-CoV-2 / cytokine storm / anti-inflammation treatment / immune therapy
| [1] |
Zhou P., Yang X.L., Wang X.G. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3. |
| [2] |
Lazear H.M., Schoggins J.W., Diamond M.S. Shared and distinct functions of type I and type III interferons. Immunity 2019; 50(4): 907-23. |
| [3] |
Ben Addi A., Lefort A., Hua X. et al. Modulation of murine dendritic cell function by adenine nucleotides and adenosine: involvement of the A (2B) receptor. Eur. J. Immunol. 2008; 38(6): 1610-20. |
| [4] |
de Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging cronaviruses. Nat. Rev. Microbiol. 2016; 14(8): 523-34. |
| [5] |
Alunno A., Padjen I., Fanouriakis A., Boumpas D.T. Pathogenic and therapeutic relevance of JAK/STAT signaling in systemic lupus erythematosus: integration of distinct inflammatory pathways and the prospect of their inhibition with an oral agent. Cells 2019; 8(8): 898. doi: 10.3390/cells8080898. |
| [6] |
Kindler E., Thiel V., Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv. Virus Res. 2016; 96: 219-43. |
| [7] |
Lu X., Pan J., Tao J., Guo D. SARS-CoV nucleocapsid protein antagonizes IFN-beta response by targeting initial step of IFN-beta induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes. 2011; 42(1): 37-45. |
| [8] |
Cron R.Q., Chatham W.W. The rheumatologist’s role in Covid-19. J. Rheumatol. 2020; 47(5): 639-42. |
| [9] |
Tisoncik J.R., Korth M.J., Simmons C.P., et al. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012; 76: 16-32. |
| [10] |
Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017; 39: 529-39. |
| [11] |
Qin C., Zhou L., Hu Z. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020; 71(15): 762-8. |
| [12] |
Chen G., Wu D., Guo W. et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020; 130(5): 2620-9. |
| [13] |
National Health Commission of the People's Republic of China The Diagnosis and Treatment Plan for 2019-nCoV (accessed 4 March 2020). The Seventh Trial Edition www.nhc.gov.cn/yzygj/s7653p/202003/46c9 294a7dfe4cef80dc7f5912eb1989.shtml. |
| [14] |
Guan W-j., Ni Z-y., Hu Y. et al. Clinical characteristics of coronavirus Disease 2019 in China. N. Engl. J. Med. 2020 382: 1708-20. |
| [15] |
Wan S., Yi Q., Fan S. et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv 2020.02.10.20021832. doi: https://doi.org/10.1101/2020.02.10.20021832. |
| [16] |
Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8: 420-2. |
| [17] |
Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017; 39: 517-28. |
| [18] |
Chiappelli F., Khakshooy A., Greenberg G. CoViD-19 Immunopathology and Immunotherapy. Bioinformation 2020; 16(3): 219-22. |
| [19] |
Chen N., Zhou M., Dong X. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-13. |
| [20] |
Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061-9. |
| [21] |
Yao X.H., Li T.Y., He Z.C. et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Chin. J. Pathol. 2020; 49(5): 411-7. |
| [22] |
Shimabukuro-Vornhagen A., Godel P., Subklewe M. et al. Cytokine release syndrome. J. Immunother. Cancer 2018; 6: 56. |
| [23] |
Временные методические рекомендации: профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Утверж. Е.Г. Камкин. Версия 8, 03.09.2020. |
| [24] |
Деев Р.В. Клеточная трансплантация в программе лечения COVID-19: пересадка стволовых стромальных (мезенхимальных) клеток. Гены и Клетки 2020; 15(2): 9-17. |
| [25] |
Behrens E.M., Koretzky G.A. Review: cytokine storm syndrome: looking toward the precision medicine era. Arthritis Rheumatol. 2017; 69: 1135-43. |
| [26] |
Ferro F., Elefante E., Baldini C., et al. COVID-19: the new challenge for rheumatologists. Clin. Exp. Rheumatol. 2020; 38(2): 175-80. |
| [27] |
D'Antiga L. Coronaviruses and immunosuppressed patients: the facts during the third epidemic. Liver Transpl. 2020; 26(6): 832-4. |
| [28] |
Samuel C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 2001; 14: 778-809. |
| [29] |
Shen K.L., Yang Y.H. Diagnosis and treatment of 2019 novel coronavirus infection in children: a pressing issue. World J. Pediatr. 2020: 6-8. |
| [30] |
Lokugamage K.G., Schindewolf C., Menachery V.D. SARS-CoV-2 sensitive to type I. interferon pretreatment. Bio Rxiv. 2020. |
| [31] |
Sheahan T.P., Sims A.C., Leist S.R. et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020; 11: 222. https://doi. org/10.1038/s41467-019-13940-6. |
| [32] |
Menachery V.D., Yount B.L., Josset L. et al. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-O-methyltransferase activity. J. Virol. 2014; 88: 4251-64. |
| [33] |
Stockman L.J., Bellamy R., Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006; 3: 1525-31. |
| [34] |
Dong L., Hu S., Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 2020; 14: 58-60. |
| [35] |
Bellingan G., Maksimow M., Howell D.C. et al. The effect of intravenous interferon-beta-1a (FP-1201) on lung CD73 expression and on acute respiratory distress syndrome mortality: an open-label study. Lancet Respir. Med. 2014; 2: 98-107. |
| [36] |
Ranieri V.M., Pettila V., Karvonen M.K. et al. Effect of intravenous interferon p-1a on death and days free from mechanical ventilation among patients with moderate to severe acute respiratory distress syndrome: a randomized clinical trial. JAMA 2020; 323: 725-33. |
| [37] |
Sallard E., Lescure F.X., Yazdanpanah Y. et al. Type 1 interferons as a potential treatment against COVID-19. Antiviral. Res. 2020; 178: 104791. |
| [38] |
Mair-Jenkins J., Saavedra-Campos M., Baillie J. K. et al. The effectiveness of convalescent plasma and hyper immune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J. Infect. Dis. 201 5; 211(1): 80-90. |
| [39] |
Casadevall A., Pirofski L.A. The convalescent sera option for containing COVID-19. J. Clin. Invest. 2020; 130(4): 1545-8. |
| [40] |
Michot J.M., Albiges L., Chaput N. et al. Tocilizumab, an anti-IL6 receptor antibody, to treat Covid-19-related respiratory failure: a case report. Ann. Oncol. 2020; 31(7): 961-4. |
| [41] |
Zhang X., Song K., Tong F., et al. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv. 2020; 4(7): 1307-10. |
| [42] |
Genentech Announces FDA approval of clinical trial for Actemra to treat hospitalized patients with severe COVID-19 pneumonia, https:// www.gene.com/media/press-releases/14843/2020-03-23/ genentech-announces-fda-approval-of-clin. |
| [43] |
Sanofi and Regeneron begin global Kevzara® (sarilumab) clinical trial program in patients with severe COVID-19, http://www.news.sanofi. us/2020-03-16-Sanofi-and-Regeneron-begin-global-Kevzara-R-sarilumab-clinical-trial-program-in-patients-with-severe-COVID-19. |
| [44] |
Ascierto P.A., Fox B.A., Urba W.J. et al. Insights from immuno-oncology: the society for immunotherapy of cancer statement on access to IL-6-targeting therapies for COVID-19. J. Imm. Ther. Cancer 2020; 8: e000878. |
| [45] |
Henter J.I., Chow C.B., Leung C.W. et al. Cytotoxic therapy for severe avian influenza A (H5N1) infection. Lancet 2006; 367(9513): 870-3. |
| [46] |
Sonmez H.E., Demir S., Bilginer Y., Ozen S. Anakinra treatment in macrophage activation syndrome: a single center experience and systemic review of literature. Clin. Rheumatol. 2018; 37(12): 3329-35. |
| [47] |
Maschalidi S., Sepulveda F.E., Garrigue A. et al. Therapeutic effect of JAK1/2 blockade on the manifestations of hemophagocytic lymphohistiocytosis in mice. Blood 2016; 128(1): 60-71. |
| [48] |
Cron R.Q., Chatham W.W. The rheumatologist’s role in COVID-19. J. Rheumatol. 2020; 47(5): 639-42. |
| [49] |
Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054-62. |
| [50] |
Uccelli A., de Rosbo N.K. The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann. N.Y. Acad. Sci., 2015; 1351: 114-26. |
| [51] |
Ben-Mordechai T., Palevski D., Glucksam-Galnoy Y. et al. Targeting macrophage subsets for infarct repair. J. Cardiovasc. Pharmacol. Ther. 2015; 20(1): 36-51. |
| [52] |
Lee J.W., Fang X.H., Krasnodembskaya A. et al. Concise review: Mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem cells 2011; 29(6): 913-9. |
| [53] |
Jinxin Q., Chengchao D., Xian J., Yong G. Advances in developing CAR T-cell therapy for HIV cure Front. Immunol. 2020; 11: 361. |
| [54] |
Adipose-derived mesenchymal stem cells in acute respiratory Distress Syndrome COVID-19, SARS-CoV-2. NCT04280224. |
| [55] |
Adipose-derived Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome COVID-19. NCT04324996. |
| [56] |
Adipose-derived Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome COVID-19, SARS-CoV-2. NCT04344548. |
| [57] |
Zhang C., Liu J., Zhong J.F., Zhang X. Engineering CAR-T cells. Biomark. Res. 2017; 5: 22. |
| [58] |
Ramos C.A., Dotti G. Chimericantigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert. Opin. Biol. Ther. 2011; 11: 855-73. |
Eco-Vector
/
| 〈 |
|
〉 |