Complex assessment of a plasmid DNA mechanism of action in development of gene-activated materials

I. Y Bozo , M. O Mavlikeev , A. A Titova , A. I Bilyalov , F. A Indeykin , A. A Pulin , I. I Eremin , V. S Komlev , A. A Isaev , R. V Deev

Genes & Cells ›› 2020, Vol. 15 ›› Issue (3) : 108 -113.

PDF
Genes & Cells ›› 2020, Vol. 15 ›› Issue (3) : 108 -113. DOI: 10.23868/202011016
Articles
research-article

Complex assessment of a plasmid DNA mechanism of action in development of gene-activated materials

Author information +
History +
PDF

Abstract

The number of studies related with gene-activated matrices is increasing annually; the first-in-class product has been already implemented into clinical practice for bone grafting indications. Considering specificity of the gene-activated matrices mechanism of action determined by gene constructs, there is a demand to standardize the methods allowing to characterize all the stages of biological action in vivo. Here, using on the example of a gene-activated hydrogel consisting of type I collagen and plasmid DNA with the vascular endothelial growth factor gene (VEGF165), the main steps of the plasmid DNA mechanism of action were confirmed by various methods. For this, a fluorescent Cy3, reporter plasmid DNA with the firefly luciferase gene (Luc), RT-PCR and ELISA, immunohistochemical study with antibodies to CD31 were used. The results were compared with the other scientific papers, some recommendations were formulated to determine a minimally required list of studies for the development of gene-activated materials.

Keywords

VEGF / gene-activated matrix / hydrogel / plasmid DNA / Cy3 / luciferase / VEGF

Cite this article

Download citation ▾
I. Y Bozo, M. O Mavlikeev, A. A Titova, A. I Bilyalov, F. A Indeykin, A. A Pulin, I. I Eremin, V. S Komlev, A. A Isaev, R. V Deev. Complex assessment of a plasmid DNA mechanism of action in development of gene-activated materials. Genes & Cells, 2020, 15(3): 108-113 DOI:10.23868/202011016

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lu H., Lv L., Dai Y. et al. Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-p1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. PLoS One 2013; 8(7]: e69950.

[2]

Keeney M., van den Beucken J.J., van der Kraan P.M. et al. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials. 2010; 31(10]: 2893-902.

[3]

Бозо И.Я., Деев Р.В., Журавлева М.Н., Комлев В.С., Попов В.К., Смирнов И.В., Федотов А.Ю. Ген-активированный остеопластический материал на основе октакальциевого фосфата, допированный ионами магния. Материаловедение 2017; 5: 33-37.

[4]

Деев Р.В., Дробышев А.Ю., Бозо И.Я. Ординарные и активированные остеопластические материалы. Вестник травматологии и ортопедии им. Н.Н. Приорова 2015; 1: 51-69.

[5]

Peach C.J., Mignone V.W., Arruda M.A. et al. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J. Mol Sci. 2018; 19(4]: 1264.

[6]

Деев Р.В., Бозо И.Я., Мжаванадзе Н.Д. и др. Эффективность применения гена VEGF165 в комплексном лечении пациентов с хронической ишемией нижних конечностей 2а-3 стадии. Ангиология и сосудистая хирургия 2014; 20(2]: 38-48. [Deev R.V., Bozo I.Ya., Mzhavanadze N.D. et al. Efficacy of using VEGF165 gene in comprehensive treatment of patients with stage 2А-3 lower limb chronic ischaemia. Angiol Sosud Khir. 2014; 20(2]: 38-48].

[7]

Sallent I., Capella-Monsonis H., Procter P. и др. The Few Who Made It: Commercially and Clinically Successful Innovative Bone Grafts. Front Bioeng Biotechnol. 2020; 8: 952.

[8]

Chira S., Jackson C.S., Oprea I. et al. Calin, Ioana Berindan-Neagoe Progresses towards safe and efficient gene therapy vectors. Oncotarget 2015; 6(31]: 30675-30703.

[9]

Григорян А.С., Шевченко К.Г. Возможные молекулярные механизмы функционирования плазмидных конструкций, содержащих ген VEGF. Гены и Клетки 2011; 6(3]: 24-28. [Grigorian A.S., Shevchenko K.G. Some possible molecular mechanisms of VEGF encoding plasmids functioning. Genes and Cells 2011; 6(3]: 24-28].

[10]

Бозо И.Я., Билялов А.И., Мавликеев М.О. и др. Ген-активированные гидрогели в регенеративной медицине. Гены и Клетки 2019; 14(1]: 16-21

[11]

D’Mello S., Atluri K., Geary S.M. et al. Bone regeneration using gene-activated matrices. AAPS J. 2017; 19(1]: 43-53.

[12]

Bozo I.Y., Deev R.V., Drobyshev A.Y. et al. World's First Clinical Case of Gene-Activated Bone Substitute Application. Case Rep Dent. 2016; 2016: 8648949.

[13]

Masgutov R., Chekunov M., Zhuravleva M. et al. Use of gene-activated demineralized bone allograft in the therapy of ulnar pseudarthrosis. case report. BioNanoScience. 2017; 7(1]: 194-198.

[14]

Деев Р.В., Бозо И.Я., Мавликеев М.О. Регенерационный гистогенез в области дефекта скелетной мышцы при местном введении ген-активированного гидрогеля на основе гиалуроновой кислоты в эксперименте. Гены и Клетки 2020; 15(2]: 66-72. [Deev R.V., Bozo I.Y., Mavlikeev M.O. et al. Regenerative histogenesis in a skeletal muscle defect with local injection of gene-activated hydrogel in an experiment. Genes and Cells 2020; 15(2]: 66-72].

[15]

Palumbo РМ, Zhong X., Panus D. et al. Transgene expression and local tissue distribution of naked and polymer-condensed plasmid DNA after intradermal administration in mice. J. Control Release. 2012; 159(2]: 232-39.

[16]

Sadeghpour H., Khalvati B., Entezar-Almahdi E. et al. Double domain polyethylenimine-based nanoparticles for integrin receptor mediated delivery of plasmid DNA. Sci Rep. 2018; 8: 6842.

[17]

Bono N., Ponti F., Mantovani D. et al. Non-Viral in Vitro Gene Delivery: It is Now Time to Set the Bar! Pharmaceutics. 2020; 12(2]: 183.

[18]

Petkov S.P., Heuts F., Krotova O.A. et al. Evaluation of immunogen delivery by DNA immunization using non-invasive bioluminescence imaging. Hum Vaccin Immunother. 2013; 9(10]: 2228-2236.

[19]

Tseng J.-C., Vasquez K.O., Peterson J.D. Optical Imaging on the IVIS SpectrumCT System: General and Technical Considerations for 2D and 3D Imaging. 2015. https://www.perkinelmer.com/lab-solutions/ resources/docs/TCH_012007_01_IVIS-2D_3D_Imaging.pdf

[20]

Бозо И.Я., Деев Р.В., Дробышев А.Ю. и др. Эффективность ген-активированного остеопластического материала на основе октакальциевого фосфата и плазмидной днк с геном VEGF в восполнении «критических» костных дефектов. Вестник травматологии и ортопедии им. Н.Н. Приорова 2015; 1: 35-42

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/