STUDY OF BIOCOMPATIBILITY OF THE MATERIAL BASED ON SMALL INTESTINAL SUBMUCOSA IN TESTS IN VITRO AND IN VIVO

A. A Dolgalev , A. A Venediktov , D. V Bobryshev , A. D Kruchinina , A. A Chagarov , Y. V Evstratova , A. I Zvyagina , K. S Krasnov , I. S Fadeeva , G. A Airapetov

Genes & Cells ›› 2019, Vol. 14 ›› Issue (2) : 47 -51.

PDF
Genes & Cells ›› 2019, Vol. 14 ›› Issue (2) : 47 -51. DOI: 10.23868/201906018
Articles
research-article

STUDY OF BIOCOMPATIBILITY OF THE MATERIAL BASED ON SMALL INTESTINAL SUBMUCOSA IN TESTS IN VITRO AND IN VIVO

Author information +
History +
PDF

Abstract

The development of barrier membranes for guided tissue regeneration remains an urgent task. A several authors proposed to use for this purpose xenomaterials from the small intestinal submucosa (SIS). The properties of such materials depend on the technology of donor cell removal (decellularization) and the condition of their extracellular matrix after processing (the presence or absence of proinflammatory damaged matrix components). The aim of this work was to study of biological properties of tissue-engineered xenogenic membranes made from porcine SIS by our patented technology (Cardioplant LLC, Russia) in experiments in vitro and in vivo. In vitro experiments was performed on cultures of multipotent mesenchymal stromal cells of the bone marrow and human skin fibroblasts, assessing viability, proliferative and mitotic activity of cells cultured on the surface of materials during 1 -7 days. The lyophilized barrier membrane bioPLATE MEMBRANE Barrier (Cardioplant LLC, Russia) used as control. To study of biocompatibility of experimental membranes in vivo, heterotopic implantation of materials to male Wistar rats was performed. The cell and tissue reactions and the degree of biointegration and the resorption of experimental materials were evaluated by rateover 14, 30, 60, and 90 days of implantation. The results indicate a higher biocompatibility of SIS-membrane compared with pericardial materials, and indicate the promise of using the porcine small intestinal submucosa to develop implants for guided tissue regeneration.

Keywords

small intestinal submucosa / pericardium / de-cellularization / membrane materials / biocompatibility / guided regeneration

Cite this article

Download citation ▾
A. A Dolgalev, A. A Venediktov, D. V Bobryshev, A. D Kruchinina, A. A Chagarov, Y. V Evstratova, A. I Zvyagina, K. S Krasnov, I. S Fadeeva, G. A Airapetov. STUDY OF BIOCOMPATIBILITY OF THE MATERIAL BASED ON SMALL INTESTINAL SUBMUCOSA IN TESTS IN VITRO AND IN VIVO. Genes & Cells, 2019, 14(2): 47-51 DOI:10.23868/201906018

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wessing B., Lettner S., Zechner W. Guided Bone Regeneration with Collagen Membranes and Particulate Graft Materials: A Systematic Review and Meta-Analysis. Int. J. Oral Maxillofac. Implants 2018; 33(1): 87-100.

[2]

Brown B.N., Badylak S.F. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl. Res. 2014; 163(4): 268-85.

[3]

Hodde J. Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J. Surg. 2006; 76(12): 1096-100.

[4]

Swinehart I.T., Badylak S.F. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev. Dyn. 2016; 245(3): 351-60.

[5]

Badylak S.F., Freytes D.O., Gilbert T.W. Reprint of Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2015; 23: 17-26.

[6]

Shi L., Ronfard V. Biochemical and biomechanical characterization of porcine small intestinal submucosa (SIS): a mini review. Int. J. Burns Trauma 2013; 3(4): 173-9.

[7]

Ji Y., Zhou J., Sun T. et al. Diverse preparation methods for small intestinal submucosa (SIS): Decellularization, components, and structure. J. Biomed. Mater. Res. A 2019; 107(3): 689-97.

[8]

Фуки В.К., Живаева Л.В., Венедиктов А.А. и др. Способ изготовления пластины на основе модифицированной ксеногенной подслизистой оболочки тонкой кишки. Патент РФ на изобр. № 2542432. 20 февраля 2015.

[9]

Долгалев А.А., Цогоев В.К., Брусницын Д.А. и др. Метод направленной тканевой регенерации для увеличения площади прикрепленной слизистой полости рта. Пародонтология 2017; 4: 73-6

[10]

Vangipuram M., Ting D., Kim S. et al. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J. Vis. Exp. 2013; (77): e3779.

[11]

Secunda R., Vennila R., Mohanashankar A.M. et al. Isolation, expansion and characterization of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 2015; 67(5): 793-807.

[12]

Рябов А.Ю., Фадеева И.С., Деев Р.В. и др. Экспериментальноморфологическое исследование биологических мембран ксеногенного происхождения. Гены и Клетки 2014; 9(4): 103-9.

[13]

Lillie R.D. Histopathologic technic and practical histochemistry. 3nd ed. New York [NY]: Blakiston Division, McGraw-Hill; 1965

[14]

Шехтер А.Б., Гуллер А.Е., Истранов Л.П. и др. Морфология коллагеновых матриксов для тканевой инженерии (биосовместимость, биодеградация, тканевый ответ). Архив патологии 2015; 77(6): 29-38

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/