Evaluation of mitochondrial functional parameters of peripheral blood mononuclear cells in patients with chronic heart failure and type 2 diabetes mellitus

Tatiana S. Sveklina , Sergey B. Shustov , Svetlana N. Kolyubaeva , Vadim A. Kozlov , Alexey N. Kuchmin , Polina D. Oktysyuk , Vladislav V. Konyaev , Ruslan I. Glushakov

Genes & Cells ›› 2024, Vol. 19 ›› Issue (4) : 485 -495.

PDF
Genes & Cells ›› 2024, Vol. 19 ›› Issue (4) : 485 -495. DOI: 10.17816/gc634093
Original Study Articles
research-article

Evaluation of mitochondrial functional parameters of peripheral blood mononuclear cells in patients with chronic heart failure and type 2 diabetes mellitus

Author information +
History +
PDF

Abstract

BACKGROUND: The hypothesis that mitochondrial dysfunction may accompany development of chronic heart failure (CHF), type 2 diabetes mellitus (T2DM), and their comorbid forms is supported by real-world clinical observations. In patients with CHF with preserved ejection fraction (CHF-pEF) and reduced ejection fraction (CHF-rEF), as well as in patients with T2DM, mitochondrial stress test to assess mitochondrial respiration of peripheral blood mononuclear cells shows a significant decrease in oxygen consumption by mitochondria of peripheral blood mononuclear cells.

AIM: The aim of the study was to evaluate an informative value of the mitochondrial stress test in patients with CHF with T2DM.

MATERIALS AND METHODS: A total of 23 patients (mean age 69.8±10.1 years) with CHF-pEF and CHF-rEF were included. Patients were divided into groups according to the presence or absence of concomitant T2DM. A mitochondrial stress test was performed using the Seahorse XFe96 analyzer (Agilent Technologies, USA). Mitochondrial respiratory function was assessed in adherent mononuclear cells by simultaneous measurement of oxygen consumption and extracellular proton current flow.

RESULTS: In patients with T2DM, the basal respiratory capacity was reduced 1.5-fold and the reserve respiratory capacity was reduced 3.5-fold compared to the control group. The most inhibitory effect of T2DM on mitochondrial respiration was observed in the CHF-rEF group: 2.1 to 3.0 times lower compared to the control group. Concomitant T2DM was associated with a lower reserve respiration capacity which was also 2.4–4.5 times lower in patients with CHF alone and 18.0 times lower in patients with T2DM alone. In addition, T2DM patients showed a 1.28-fold suppression of non-mitochondrial respiration compared to the control group.

CONCLUSION: Significant mitochondrial dysfunction detected in comorbid patients is associated with the rapid clinical progression of CHF with T2DM and high incidence of decompensation. A decrease in basal and reserve respiratory capacity is a key factor in development of CHF in patients with T2DM.

Keywords

heart failure / mitochondrial stress test / mitochondrial dysfunction / type 2 diabetes mellitus

Cite this article

Download citation ▾
Tatiana S. Sveklina, Sergey B. Shustov, Svetlana N. Kolyubaeva, Vadim A. Kozlov, Alexey N. Kuchmin, Polina D. Oktysyuk, Vladislav V. Konyaev, Ruslan I. Glushakov. Evaluation of mitochondrial functional parameters of peripheral blood mononuclear cells in patients with chronic heart failure and type 2 diabetes mellitus. Genes & Cells, 2024, 19(4): 485-495 DOI:10.17816/gc634093

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jirak P, Fejzic D, Paar V, et al. Influences of Ivabradine treatment on serum levels of cardiac biomarkers sST2, GDF-15, suPAR and H-FABP in patients with chronic heart failure. Acta Pharmacol Sin. 2018;39(7):1189–1196. doi: 10.1038/aps.2017.167

[2]

Jirak P., Fejzic D., Paar V., et al. Influences of Ivabradine treatment on serum levels of cardiac biomarkers sST2, GDF-15, suPAR and H-FABP in patients with chronic heart failure // Acta Pharmacol Sin. 2018. Vol. 39, N. 7. P. 1189–1196. doi: 10.1038/aps.2017.167

[3]

Fox CS. Cardiovascular disease risk factors, type 2 diabetes mellitus, and the Framingham Heart Study. Trends Cardiovasc Med. 2010;20(3):90–95. doi: 10.1016/j.tcm.2010.08.001

[4]

Fox C.S. Cardiovascular disease risk factors, type 2 diabetes mellitus, and the Framingham Heart Study // Trends Cardiovasc Med. 2010. Vol. 20, N. 3. P. 90–95. doi: 10.1016/j.tcm.2010.08.001

[5]

Kobalava ZD, Yeshniyazov NV, Medovchshikov VV, Khasanova ER. Type 2 diabetes mellitus and heart failure: innovative possibilities for management of prognosis. Kardiologiia. 2019;59(4):76–87. EDN: OLTUGV doi: 10.18087/cardio.2019.4.10253

[6]

Кобалава Ж.Д., Ешниязов Н.Б., Медовщиков В.В., Хасанова Э.Р. Сахарный диабет 2-го типа и сердечная недостаточность: инновационные возможности управления прогнозом // Кардиология. 2019. Т 59, № 4. С. 76–87. EDN: OLTUGV doi: 10.18087/cardio.2019.4.10253

[7]

Kato T, Niizuma S, Inuzuka Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail. 2010;3(3):420–30. doi: 10.1161/CIRCHEARTFAILURE.109.888479

[8]

Kato T., Niizuma S., Inuzuka Y., et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure // Circ Heart Fail. 2010. Vol. 3, N. 3. P. 420–430. doi: 10.1161/CIRCHEARTFAILURE.109.888479

[9]

Purwowiyoto SL, Prawara AS. Metabolic syndrome and heart failure: mechanism and management. Med Pharm Rep. 2021;94(1):15–21. doi: 10.15386/mpr-1884

[10]

Purwowiyoto S.L., Prawara A.S. Metabolic syndrome and heart failure: mechanism and management // Med Pharm Rep. 2021. Vol. 94, N. 1. P. 15–21. doi: 10.15386/mpr-1884

[11]

Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95:135–145. doi: 10.1161/01.RES.0000137170.41939.d9

[12]

Ingwall J.S., Weiss R.G. Is the failing heart energy starved? On using chemical energy to support cardiac function // Circ Res. 2004. Vol. 95, N. 2. P. 135–145. doi: 10.1161/01.RES.0000137170.41939.d9

[13]

Knowlton AA, Chen L, Malik ZA. Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol. 2014;63(3):196–206. doi: 10.1097/01.fjc.0000432861.55968.a6

[14]

Knowlton A.A., Chen L., Malik Z.A. Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies // J Cardiovasc Pharmacol. 2014. Vol. 63, N. 3. P. 196–206. doi: 10.1097/01.fjc.0000432861.55968.a6

[15]

Zhao L, Feng Z, Yang X, et al. The regulatory roles of O-GlcNAcylation in mitochondrial homeostasis and metabolic syndrome. Free Radic Res. 2016;50(10):1080–1088. doi: 10.1080/10715762.2016.1239017

[16]

Zhao L., Feng Z., Yang X., et al. The regulatory roles of O-GlcNAcylation in mitochondrial homeostasis and metabolic syndrome // Free Radic Res. 2016. Vol. 50, N. 10. P. 1080–1088. doi: 10.1080/10715762.2016.1239017

[17]

Gupte AA, Hamilton DJ. Mitochondrial function in non-ischemic heart failure. Adv Exp Med Biol. 2017;982:113–126. doi: 10.1007/978-3-319-55330-6_6

[18]

Gupte A.A., Hamilton D.J. Mitochondrial function in non-ischemic heart failure // Adv Exp Med Biol. 2017. Vol. 982. P. 113–126. doi: 10.1007/978-3-319-55330-6_6

[19]

Keceli G, Gupta A, Sourdon J, et al. Mitochondrial creatine kinase attenuates pathologic remodeling in heart failure. Circ Res. 2022;130(5):741–759. doi: 10.1161/CIRCRESAHA.121.319648

[20]

Keceli G., Gupta A., Sourdon J., et al. Mitochondrial creatine kinase attenuates pathologic remodeling in heart failure // Circ Res. 2022. Vol. 130, N. 5. P. 741–759. doi: 10.1161/CIRCRESAHA.121.319648

[21]

Li AL, Lian L, Chen XN, et al. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med. 2023;208:236–251. doi: 10.1016/j.freeradbiomed.2023.08.009

[22]

Li A.L., Lian L., Chen X.N., et al. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics // Free Radic Biol Med. 2023. Vol. 208. P. 236–251. doi: 10.1016/j.freeradbiomed.2023.08.009

[23]

Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol. 2022;19(11):723–736. doi: 10.1038/s41569-022-00703-y

[24]

Quiles J.M., Gustafsson Å.B. The role of mitochondrial fission in cardiovascular health and disease // Nat Rev Cardiol. 2022. Vol. 19, N. 11. P. 723–736. doi: 10.1038/s41569-022-00703-y

[25]

Guo CA, Guo S. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J Endocrinol. 2017;233(3):R131–R143. doi: 10.1530/JOE-16-0679

[26]

Guo C.A., Guo S. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure // J Endocrinol. 2017. Vol. 233, N. 3. P. R131–R143. doi: 10.1530/JOE-16-0679

[27]

Kolwicz SC Jr, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res. 2013;113(5):603–616. doi: 10.1161/CIRCRESAHA.113.302095

[28]

Kolwicz S.C. Jr, Purohit S., Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes // Circ Res. 2013. Vol. 113, N. 5. P. 603–616. doi: 10.1161/CIRCRESAHA.113.302095

[29]

Julián MT, Pérez-Montes de Oca A, Julve J, Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovasc Diabetol. 2024;23(1):65. doi: 10.1186/s12933-024-02136-y

[30]

Julián M.T., Pérez-Montes de Oca A., Julve J., Alonso N. The double burden: type 1 diabetes and heart failure-a comprehensive review // Cardiovasc Diabetol. 2024. Vol. 23, N. 1. P. 65. doi: 10.1186/s12933-024-02136-y

[31]

Bagriy AE, Suprun YeV, Mykhailichenko IS, Golodnikov IA. Heart failure and type 2 diabetes: current state of the problem. Russian Journal of Cardiology. 2020;25(4):79–85. EDN: LHZQHI doi: 10.15829/1560-4071-2020-3858

[32]

Багрий А.Э., Супрун Е.В., Михайличенко Е.С., Голодников И.А. Хроническая сердечная недостаточность и сахарный диабет 2 типа: состояние проблемы // Российский кардиологический журнал. 2020. Т. 25, № 4. С. 79–85. EDN: LHZQHI doi: 10.15829/1560-4071-2020-3858

[33]

Dabkowski ER, Baseler WA, Williamson CL, et al. Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes. Am J Physiol Heart Circ Physiol. 2010;299(2):H529–H540. doi: 10.1152/ajpheart.00267.2010

[34]

Dabkowski E.R., Baseler W.A., Williamson C.L., et al. Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes // Am J Physiol Heart Circ Physiol. 2010. Vol. 299, N. 2. P. H529–H540. doi: 10.1152/ajpheart.00267.2010

[35]

Chiu J, Farhangkhoee H, Xu BY, et al. PARP mediates structural alterations in diabetic cardiomyopathy. J Mol Cell Cardiol. 2008;45(3):385–393. doi: 10.1016/j.yjmcc.2008.06.009

[36]

Chiu J., Farhangkhoee H., Xu B.Y., et al. PARP mediates structural alterations in diabetic cardiomyopathy // J Mol Cell Cardiol. 2008. Vol. 45, N. 3. P. 385–393. doi: 10.1016/j.yjmcc.2008.06.009

[37]

Tsvetkov VA, Krutikov ES, Chistyakova SI. Subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus. Problems of Endocrinology. 2020;66(1):56–63. EDN: VUFURM doi: 10.14341/probl12359

[38]

Цветков В.А., Крутиков Е.С., Чистякова С.И. Субклиническая дисфункция левого желудочка у больных сахарным диабетом 2-го типа // Проблемы эндокринологии. 2020. Т. 66, № 1. С. 56–63. EDN: VUFURM doi: 10.14341/probl12359

[39]

Shcherbatyuk OV, Tyrenko VV, Belevitin AB, Svistov AS. Brain natriuretic peptide — the genetic code of heart failure. Bulletin of the Russian Military Medical Academy. 2006;(2):100–107. (In Russ.) EDN: KWZOIZ

[40]

Щербатюк О.В., Тыренко В.В., Белевитин А.Б., Свистов А.С. Мозговой натрийуретический пептид — генетический код сердечной недостаточности // Вестник Российской Военно-медицинской академии. 2006. № 2. С. 100–107. EDN: KWZOIZ

[41]

Cocco G, Jerie P. Assessing the benefits of natriuretic peptides-guided therapy in chronic heart failure. Cardiol J. 2015;22(1):5–11. doi: 10.5603/CJ.a2014.0041

[42]

Cocco G., Jerie P. Assessing the benefits of natriuretic peptides-guided therapy in chronic heart failure // Cardiol J. 2015. Vol. 22, N. 1. P. 5–11. doi: 10.5603/CJ.a2014.0041

[43]

Vasyuk YuA, Shupenina EYu, Namazova GA, Dubrovskaya TI. Novel algorithms for diagnosing heart failure with preserved ejection fraction in patients with hypertension and obesity. Cardiovascular Therapy and Prevention. 2021;20(1):65–69. EDN: VNLTTK doi: 10.15829/1728-8800-2021-2569

[44]

Васюк Ю.А., Шупенина Е.Ю., Намазова Г.А., Дубровская Т.И. Новые алгоритмы диагностики сердечной недостаточности с сохраненной фракцией выброса левого желудочка у пациентов с артериальной гипертензией и ожирением // Кардиоваскулярная терапия и профилактика. 2021. Т. 20, № 1. С. 65–69. EDN: VNLTTK doi: 10.15829/1728-8800-2021-2569

[45]

Pagel P, Tawil J, Boettcher B, et al. Heart failure with preserved ejection fraction: a compre- hensive review and update of diagnosis, pathophysiology, treat ENT, and perioperative implications. J Cardiothorac Vasc Anesth. 2021;35(6):1839–1859. doi: 10.1053/j.jvca.2020.07.016

[46]

Pagel P., Tawil J., Boettcher B., et al. Heart failure with preserved ejection fraction: a compre- hensive review and update of diagnosis, pathophysiology, treat ENT, and perioperative implications // J Cardiothorac Vasc Anesth. 2021. Vol. 35, N. 6. P. 1839–1859. doi: 10.1053/j.jvca.2020.07.016

[47]

Larina VN, Oynotkinova OSh, Larin VG, et al. Heart failure with preserved left ventricular ejection fraction: a comprehensive phenotype-based approach to diagnosis and treatment. Russian Journal of Cardiology and Cardiovascular Surgery. 2022;15(6):627–636. EDN: TQLABZ doi: 10.17116/kardio202215061627

[48]

Ларина В.Н., Ойноткинова О.Ш., Ларин В.Г., и др. Сердечная недостаточность с сохраненной фракцией выброса левого желудочка: комплексный фенотип-ориентированный подход к диагностике и коррекции // Кардиология и сердечно-сосудистая хирургия. 2022. Т. 15, № 6. С. 627–636. EDN: TQLABZ doi: 10.17116/kardio202215061627

[49]

Mohebi R, Wang D, Lau ES, et al. Effect of 2022 ACC/AHA/HFSA criteria on stages of heart failure in a pooled community cohort. J Am Coll Cardiol. 2023;81(23):2231–2242. doi: 10.1016/j.jacc.2023.04.007 Erratum in: J Am Coll Cardiol. 2023;82(10):1051. doi: 10.1016/j.jacc.2023.07.009

[50]

Mohebi R., Wang D., Lau E.S., et al. Effect of 2022 ACC/AHA/HFSA criteria on stages of heart failure in a pooled community cohort // J Am Coll Cardiol. 2023. Vol. 81, N. 23. P. 2231–2242. doi: 10.1016/j.jacc.2023.04.007 Erratum in: J Am Coll Cardiol. 2023. Vol. 82, N. 10. P. 1051. doi: 10.1016/j.jacc.2023.07.009

[51]

Golla MSG, Shams P. Heart failure with preserved ejection fraction (HFpEF). StatPearls. 2024.

[52]

Golla M.S.G., Shams P. Heart failure with preserved ejection fraction (HFpEF) // StatPearls. 2024.

[53]

Grievink HW, Luisman T, Kluft C, et al. Comparison of three isolation techniques for human peripheral blood mononuclear cells: cell recovery and viability, population composition, and cell functionality. Biopreserv Biobank. 2016;14(5):410–415. doi: 10.1089/bio.2015.0104

[54]

Grievink H.W., Luisman T., Kluft C., et al. Comparison of three isolation techniques for human peripheral blood mononuclear cells: cell recovery and viability, population composition, and cell functionality // Biopreserv Biobank. 2016. Vol. 14, N. 5. P. 410–415. doi: 10.1089/bio.2015.0104

[55]

Kalantar GH, Saraswat S, SantaCruz-Calvo S, et al. Fasting and glucose metabolism differentially impact peripheral inflammation in human type 2 diabetes. Nutrients. 2024;16(10):1404. doi: 10.3390/nu16101404

[56]

Kalantar G.H., Saraswat S., SantaCruz-Calvo S., et al. Fasting and glucose metabolism differentially impact peripheral inflammation in human type 2 diabetes // Nutrients. 2024. Vol. 16, N. 10. P. 1404. doi: 10.3390/nu16101404

[57]

Tereshchenko SN, Galyavich AS, Uskach TM. et al. 2020 Clinical Practice Guidelines for Chronic Heart Failure. Russian Journal of Cardiology. 2020;25(11):311–374. EDN: LJGGQV doi: 10.15829/1560-4071-2020-4083

[58]

Терещенко С.Н., Галявич А.С., Ускач Т.М., и др. Хроническая сердечная недостаточность. Клинические рекомендации 2020 // Российский кардиологический журнал. 2020. Т. 25, № 11. С. 311–374. EDN: LJGGQV doi: 10.15829/1560-4071-2020-4083

[59]

Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care / edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 11th edition. Diabetes Mellitus. 2023;26(2S):1–157. EDN: DCKLCI doi: 10.14341/DM13042

[60]

Дедов И.И., Шестакова М.В., Майоров А.Ю., и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / / под ред. И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 11-й выпуск // Сахарный диабет. 2023. Т. 26, № 2S. С. 1–157. EDN: DCKLCI doi: 10.14341/DM13042

[61]

Altintas MM, DiBartolo S, Tadros L, et al. Metabolic changes in peripheral blood mononuclear cells isolated from patients with end stage renal disease. Front Endocrinol (Lausanne). 2021;12:629239. doi: 10.3389/fendo.2021.629239

[62]

Altintas M.M., DiBartolo S., Tadros L., et al. Metabolic changes in peripheral blood mononuclear cells isolated from patients with end stage renal disease // Front Endocrinol (Lausanne). 2021. Vol. 12. P. 629239. doi: 10.3389/fendo.2021.629239

[63]

Connolly NMC, Theurey P, Adam-Vizi V, et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 2018;25(3):542–572. doi: 10.1038/s41418-017-0020-4

[64]

Connolly N.M.C, Theurey P., Adam-Vizi V., et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases // Cell Death Differ. 2018. Vol. 25, N. 3. P. 542–572. doi: 10.1038/s41418-017-0020-4

[65]

Kubota M, Shui YB, Liu M, et al. Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma. Free Radic Biol Med. 2016;97:513–519. doi: 10.1016/j.freeradbiomed.2016.07.016

[66]

Kubota M., Shui Y.B., Liu M., et al. Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma // Free Radic Biol Med. 2016. Vol. 97. P. 513–519. doi: 10.1016/j.freeradbiomed.2016.07.016

[67]

Scott SR, Singh K, Yu Q, et al. Sex as biological variable in cardiac mitochondrial bioenergetic responses to acute stress. Int J Mol Sci. 2022;23(16):9312. doi: 10.3390/ijms23169312

[68]

Scott S.R., Singh K., Yu Q., et al. Sex as biological variable in cardiac mitochondrial bioenergetic responses to acute stress // Int J Mol Sci. 2022. Vol. 23, N. 16. P. 9312. doi: 10.3390/ijms23169312

[69]

Divakaruni AS, Paradyse A, Ferrick DA, et al. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol. 2014;547:309–354. doi: 10.1016/B978-0-12-801415-8.00016-3

[70]

Divakaruni A.S., Paradyse A., Ferrick D.A., et al. Analysis and interpretation of microplate-based oxygen consumption and pH data // Methods Enzymol. 2014. Vol. 547. P. 309–354. doi: 10.1016/B978-0-12-801415-8.00016-3

[71]

Masuzawa A, Black KM, Pacak CA, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2013;304(7):H966–H982. doi: 10.1152/ajpheart.00883.2012

[72]

Masuzawa A., Black K.M., Pacak C.A., et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury // Am J Physiol Heart Circ Physiol. 2013. Vol. 304, N. 7. P. H966–H982. doi: 10.1152/ajpheart.00883.2012

[73]

Ikeda G, Santoso MR, Tada Y, et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium. J Am Coll Cardiol. 2021;77(8):1073–1088. doi: 10.1016/j.jacc.2020.12.060

[74]

Ikeda G., Santoso M.R., Tada Y., et al. Mitochondria-rich extracellular vesicles from autologous stem cell-derived cardiomyocytes restore energetics of ischemic myocardium // J Am Coll Cardiol. 2021. Vol. 77, N. 8. P. 1073–1088. doi: 10.1016/j.jacc.2020.12.060

[75]

Patent RUS No. 2818454 C1/04.06.2023. Byul. No. 13. Sveklina TS, Koliubaeva SN, Koniaev VV, et al. Method for assessing effectiveness of drug therapy in patients with chronic heart failure. Available from: https://fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2818454&TypeFile=html EDN: GFMFQC

[76]

Патент РФ на изобретение № 2818454 C1/04.06.2023. Бюл. № 13. Свеклина Т.С., Колюбаева С.Н., Коняев В.В., и др. Способ оценки эффективности лекарственной терапии у больных с хронической сердечной недостаточностью. Режим доступа: https://fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=2818454&TypeFile=html Дата обращения: 28.08.2024. EDN: GFMFQC

[77]

Lange M, Zeng Y, Knight A, et al. Comprehensive method for culturing embryonic dorsal root ganglion neurons for Seahorse Extracellular Flux XF24 analysis. Front Neurol. 2012;3:175. doi: 10.3389/fneur.2012.00175

[78]

Lange M., Zeng Y., Knight A., et al. Comprehensive method for culturing embryonic dorsal root ganglion neurons for Seahorse Extracellular Flux XF24 analysis // Front Neurol. 2012. Vol. 3. P. 175. doi: 10.3389/fneur.2012.00175

[79]

Hill BG, Benavides GA, Lancaster JR Jr, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem. 2012;393(12):1485–1512. doi: 10.1515/hsz-2012-0198

[80]

Hill B.G., Benavides G.A., Lancaster J.R. Jr, et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy // Biol Chem. 2012. Vol. 393, N. 12. P. 1485–1512. doi: 10.1515/hsz-2012-0198

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/