Correction of F508del in CFTR using CRISPR/Cas9 in cells derived from cystic fibrosis patients
Ekaterina V. Kondrateva , Anna G. Demchenko , Olga V. Volodina , Oxana P. Ryzhkova , Valeriia A. Kovalskaia , Vyacheslav Yu. Tabakov , Alexander V. Lavrov , Svetlana A. Smirnikhina
Genes & Cells ›› 2024, Vol. 19 ›› Issue (4) : 453 -472.
Correction of F508del in CFTR using CRISPR/Cas9 in cells derived from cystic fibrosis patients
BACKGROUND: Cystic fibrosis (CF) is the most common fatal and incurable genetic disease. The most frequent reason is the F508del mutation in the CFTR gene, which can theoretically be corrected by genome editing. Currently, pressing issue is the search for the most effective CRISPR/Cas9-based editing system for this mutation, as well as the selection of target cells that could support self-renewal and provide differentiated progeny of lung cells. Such promising targets can be presented by human induced pluripotent stem cells (hiPSCs) and human induced airway basal stem cells (hiBCs).
AIM: To correct the F508del mutation in the CFTR gene in hiPSCs and hiBCs derived from CF patients using CRISPR/Cas9 technology.
MATERIALS AND METHODS: We obtained three hiPSCs lines by reprogramming fibroblasts from patients with CF and three hiBCs lines by targeted differentiation of these hiPSCs. Based on three different variants of the Cas9 nuclease, three single guide RNAs, and two single-stranded oligodeoxyribonucleotides we created eight systems for editing the F508del mutation and transfected them into hiPSCs and hiBCs by electroporation. Then we analyzed the levels of non-homologous end joining, indels, and directed homologous repair in the transfected cells by deep target sequencing.
RESULTS: Eight editing systems were tested on hiPSCs. The highest efficiency of non-homologous end joining, indels, and directed homologous repair was observed when using SpCas9(1.1). The mutation was significantly corrected using a combination of this nuclease with the guide RNA sgCFTR#sp1 (with an efficiency up to 6.6% of alleles in transfected cells). Only two editing systems), which seemed to be most effective on chiPSCs, were tested on hiBCs. The mutation was significantly corrected using both systems (with efficiency up to 20% of alleles in transfected cells).
CONCLUSION: We demonstrated the possibility of highly effective correction of the F508del mutation in the CFTR gene in cells obtained from patients with CF using a designed system for editing this mutation based on the CRISPR/Cas9 system. Since hiBCs can be transfected and edited quite successfully, and can also be obtained in satisfactory quantities from hiPSCs, they are a promising platform for the development of gene therapy for cystic fibrosis.
cystic fibrosis / induced pluripotent stem cells / CRISPR/Cas9 / gene editing / F508del
| [1] |
Kondrateva EI, Voronkova AYu, Kashirskaya NYu, et al. Russian registry of patients with cystic fibrosis: lessons and perspectives. Pulmonologiya. 2023;33(2):171–181. EDN: DBHMER doi: 10.18093/0869-0189-2023-33-2-171-181 |
| [2] |
Кондратьева Е.И., Воронкова А.Ю., Каширская Н.Ю., и др. Российский регистр пациентов с муковисцидозом: уроки и перспективы // Пульмонология. 2023. Т. 33, № 2. С. 171–181. EDN: DBHMER doi: 10.18093/0869-0189-2023-33-2-171-181 |
| [3] |
Schneider EK, Reyes-Ortega F, Li J, Velkov T. Can cystic fibrosis patients finally catch a breath with lumacaftor/ivacaftor? Clin Pharmacol Ther. 2016;101(1):130–141. doi: 10.1002/cpt.548 |
| [4] |
Schneider E.K., Reyes-Ortega F., Li J., Velkov T. Can cystic fibrosis patients finally catch a breath with lumacaftor/ivacaftor? // Clin Pharmacol Ther. 2016. Vol. 101, N. 1. P. 130–141. doi: 10.1002/cpt.548 |
| [5] |
Kondrateva E, Demchenko A, Lavrov A, Smirnikhina S. An overview of currently available molecular Cas-tools for precise genome modification. Gene. 2021;769:145225. doi: 10.1016/j.gene.2020.145225 |
| [6] |
Kondrateva E., Demchenko A., Lavrov A., Smirnikhina S. An overview of currently available molecular Cas-tools for precise genome modification // Gene. 2021. Vol. 769. P. 145225. doi: 10.1016/j.gene.2020.145225 |
| [7] |
Hsu PD, Zhang F. Dissecting neural function using targeted genome engineering technologies. ACS Chem Neurosci. 2012;3(8):603–610. doi: 10.1021/cn300089k |
| [8] |
Hsu P.D., Zhang F. Dissecting neural function using targeted genome engineering technologies // ACS Chem Neurosci. 2012. Vol. 3, N. 8. P. 603–610. doi: 10.1021/cn300089k |
| [9] |
Yang H, Wang H, Shivalila CS, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–1379. doi: 10.1016/j.cell.2013.08.022 |
| [10] |
Yang H., Wang H., Shivalila C.S., et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering // Cell. 2013. Vol. 154, N. 6. P. 1370–1379. doi: 10.1016/j.cell.2013.08.022 |
| [11] |
Charpentier M, Khedher AHY, Menoret S, et al. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun. 2018;9(1):1133. doi: 10.1038/s41467-018-03475-7 |
| [12] |
Charpentier M., Khedher A.H.Y., Menoret S., et al. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair // Nat Commun. 2018. Vol. 9, N. 1. P. 1133. doi: 10.1038/s41467-018-03475-7 |
| [13] |
Rees HA, Yeh WH, Liu DR. Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun. 2019;10(1):2212. doi: 10.1038/s41467-019-09983-4 |
| [14] |
Rees H.A., Yeh W.H., Liu D.R. Development of hRad51–Cas9 nickase fusions that mediate HDR without double-stranded breaks // Nat Commun. 2019. Vol. 10, N. 1. P. 2212. doi: 10.1038/s41467-019-09983-4 |
| [15] |
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem. 2017;293(27):10512–10523. doi: 10.1074/jbc.tm117.000374 |
| [16] |
Pannunzio N.R., Watanabe G., Lieber M.R. Nonhomologous DNA end-joining for repair of DNA double-strand breaks // J Biol Chem. 2017. Vol. 293, N. 27. P. 10512–10523. doi: 10.1074/jbc.tm117.000374 |
| [17] |
Renaud JB, Boix C, Charpentier M, et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep. 2016;14(9):2263–2272. doi: 10.1016/j.celrep.2016.02.018 |
| [18] |
Renaud J.B., Boix C., Charpentier M., et al. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases // Cell Rep. 2016. Vol. 14, N. 9. P. 2263–2272. doi: 10.1016/j.celrep.2016.02.018 |
| [19] |
Wecht S, Rojas M. Mesenchymal stem cells in the treatment of chronic lung disease. Respirology. 2016;21(8):1366–1375. doi: 10.1111/resp.12911 |
| [20] |
Wecht S., Rojas M. Mesenchymal stem cells in the treatment of chronic lung disease // Respirology. 2016. Vol. 21, N. 8. P. 1366–1375. doi: 10.1111/resp.12911 |
| [21] |
King NE, Suzuki S, Barillà C, et al. Correction of airway stem cells: genome editing approaches for the treatment of cystic fibrosis. Hum Gene Ther. 2020;31(17-18):956–972. doi: 10.1089/hum.2020.160 |
| [22] |
King N.E., Suzuki S., Barillà C., et al. Correction of airway stem cells: genome editing approaches for the treatment of cystic fibrosis // Hum Gene Ther. 2020. Vol. 31, N. 17–18. P. 956-972. doi: 10.1089/hum.2020.160 |
| [23] |
Demchenko A, Belova L, Balyasin M, et al. Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research. Front Cell Dev Biol. 2024;12:1336392. doi: 10.3389/fcell.2024.1336392 |
| [24] |
Demchenko A., Belova L., Balyasin M., et al. Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research // Front Cell Dev Biol. 2024. Vol. 12. P. 1336392. doi: 10.3389/fcell.2024.1336392 |
| [25] |
Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653–658. doi: 10.1016/j.stem.2013.11.002 |
| [26] |
Schwank G., Koo B.K., Sasselli V., et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients // Cell Stem Cell. 2013. Vol. 13, N. 6. P. 653–658. doi: 10.1016/j.stem.2013.11.002 |
| [27] |
Firth AL, Menon T, Parker GS, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 2015;12(9):1385–1390. doi: 10.1016/j.celrep.2015.07.062 |
| [28] |
Firth A.L., Menon T., Parker G.S., et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs // Cell Rep. 2015. Vol. 12, N. 9. P. 1385–1390. doi: 10.1016/j.celrep.2015.07.062 |
| [29] |
Peters-Hall JR, Coquelin M, Torres MJ, et al. Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function. Am J Physiol Lung Cell Mol Physiol. 2018;315(2):L313–L327. doi: 10.1152/ajplung.00355.2017 |
| [30] |
Peters-Hall J.R., Coquelin M.L., Torres M.J., et al. Long-term culture and cloning of primary human bronchial basal cells that maintain multipotent differentiation capacity and CFTR channel function // Am J Physiol Lung Cell Mol Physiol. 2018. Vol. 315, N. 2. P. L313–L327. doi: 10.1152/ajplung.00355.2017 |
| [31] |
Palmer DJ, Turner DL, Ng P. A single “all-in-one” helper-dependent adenovirus to deliver donor DNA and CRISPR/Cas9 for efficient homology-directed repair. Mol Ther Methods Clin Dev. 2020;17:441–447. doi: 10.1016/j.omtm.2020.01.014 |
| [32] |
Palmer D.J., Turner D.L., Ng P. A single “all-in-one” helper-dependent adenovirus to deliver donor dna and CRISPR/Cas9 for efficient homology-directed repair // Mol Ther Methods Clin Dev. 2020. Vol. 17. P. 441–447. doi: 10.1016/j.omtm.2020.01.014 |
| [33] |
Hollywood JA, Lee CM, Scallan MF, Harrison PT. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene. Sci Rep. 2016;6:32230. doi: 10.1038/srep32230 |
| [34] |
Hollywood J.A., Lee C.M., Scallan M.F., Harrison P.T. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene // Sci Rep. 2016. Vol. 6. P. 32230. doi: 10.1038/srep32230 |
| [35] |
Ruan J, Hirai H, Yang D, et al. Efficient gene editing at major CFTR mutation loci. Mol Ther Nucleic Acids. 2019;16:73–81. doi: 10.1016/j.omtn.2019.02.006 |
| [36] |
Ruan J., Hirai H., Yang D., et al. Efficient gene editing at major CFTR mutation loci // Mol Ther Nucleic Acids. 2019. Vol. 16. P. 73–81. doi: 10.1016/j.omtn.2019.02.006 |
| [37] |
Vaidyanathan S, Salahudeen AA, Sellers ZM, et al. High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients rescues CFTR function in differentiated epithelia. Cell Stem Cell. 2020;26(2):161–171.e4. doi: 10.1016/j.stem.2019.11.002 |
| [38] |
Vaidyanathan S., Salahudeen A.A., Sellers Z.M., et al. High-efficiency, selection-free gene repair in airway stem cells from cystic fibrosis patients rescues CFTR function in differentiated epithelia // Cell Stem Cell. 2020. Vol. 26, N. 2. P. 161–171.e4. doi: 10.1016/j.stem.2019.11.002 |
| [39] |
Djidrovski I, Georgiou M, Hughes GL, et al. SARS-CoV-2 infects an upper airway model derived from induced pluripotent stem cells. Stem Cells. 2021;39(10):1310–1321. doi: 10.1002/stem.3422 |
| [40] |
Djidrovski I., Georgiou M., Hughes G.L., et al. SARS-CoV-2 infects an upper airway model derived from induced pluripotent stem cells // Stem Cells. 2021. Vol. 39, N. 10. P. 1310–1321. doi: 10.1002/stem.3422 |
| [41] |
Wong AP, Bear CE, Chin S, et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nat Biotechnol. 2012;30(9):876–882. doi: 10.1038/nbt.2328 |
| [42] |
Wong A.P., Bear C.E., Chin S., et al. Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein // Nat Biotechnol. 2012. Vol. 30, N. 9. P. 876–882. doi: 10.1038/nbt.2328 |
| [43] |
Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84–88. doi: 10.1126/science.aad5227 |
| [44] |
Slaymaker I.M., Gao L., Zetsche B., et al. Rationally engineered Cas9 nucleases with improved specificity // Science. 2016. Vol. 351, N. 6268. P. 84–88. doi: 10.1126/science.aad5227 |
| [45] |
Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–495. doi: 10.1038/nature16526 |
| [46] |
Kleinstiver B.P., Pattanayak V., Prew M.S., et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects // Nature. 2016. Vol. 529, N. 7587. P. 490–495. doi: 10.1038/nature16526 |
| [47] |
Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–191. doi: 10.1038/nature14299 |
| [48] |
Ran F.A., Cong L., Yan W.X., et al. In vivo genome editing using Staphylococcus aureus Cas9 // Nature. 2015. Vol. 520, N. 7546. P. 186–191. doi: 10.1038/nature14299 |
| [49] |
Richardson CD, Ray GJ, DeWitt MA, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34(3):339–344. doi: 10.1038/nbt.3481 |
| [50] |
Richardson C.D., Ray G.J., DeWitt M.A., et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA // Nat Biotechnol. 2016. Vol. 34, N. 3. P. 339–344. doi: 10.1038/nbt.3481 |
| [51] |
Song B, Yang S, Hwang GH, etal. Analysis of NHEJ-based DNA repair after CRISPR-mediated DNA cleavage. Int J Mol Sci. 2021;22(12):6397. doi: 10.3390/ijms22126397 |
| [52] |
Song B., Yang S., Hwang G.H., et al. Analysis of NHEJ-Based DNA repair after CRISPR-mediated DNA cleavage // Int J Mol Sci. 2021. Vol. 22, N. 12. P. 6397. doi: 10.3390/ijms22126397 |
| [53] |
Johnson LG, Olsen JC, Sarkadi B, et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992;2(1):21–25. doi: 10.1038/ng0992-21 |
| [54] |
Johnson L.G., Olsen J.C., Sarkadi B., et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis // Nat Genet. 1992. Vol. 2, N. 1. P. 21–25. doi: 10.1038/ng0992-21 |
| [55] |
Char JE, Wolfe MH, Cho HJ, et al. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor. PLoS One. 2014;9(2):e88564. doi: 10.1371/journal.pone.0088564 |
| [56] |
Char J.E., Wolfe M.H., Cho H.J., et al. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor // PLoS One. 2014. Vol. 9, N. 2. P. e88564. doi: 10.1371/journal.pone.0088564 |
Eco-Vector
/
| 〈 |
|
〉 |