Articular cartilage tissue engineering using genetically modified induced pluripotent stem cell lines
Nikita S. Gavrilov , Nadezda V. Ignatyeva , Ekaterina V. Medvedeva , Peter S. Timashev
Genes & Cells ›› 2024, Vol. 19 ›› Issue (4) : 404 -424.
Articular cartilage tissue engineering using genetically modified induced pluripotent stem cell lines
Mature hyaline cartilage has a low regenerative potential and its repair remains a complex clinical and research issue. Articular cartilage injuries often contribute to the development of osteoarthritis, resulting in loss of joint function and patient disability. Surgical techniques for repairing articular surfaces, such as mosaic chondroplasty and microfracture, which are designed for small defects, cannot be used for degenerative and dystrophic cartilage lesions. Cell therapy using chondrocytes differentiated from induced pluripotent stem cells (iPSCs) is a promising approach to reconstruct articular cartilage tissue. iPSCs have high proliferative activity, which allows the harvesting of autologous cells in quantities necessary to repair a joint defect. CRISPR-Cas genome editing technology, based on the bacterial adaptive immune system, enables the genetic modification of iPSCs to obtain progenitor cells with specific characteristics and properties.
This review describes specific research papers on the combined use of iPSC and CRISPR-Cas technologies for the evaluation of cartilage regenerative medicine. Papers were evaluated for the last twelve years since CRISPR-Cas technology was introduced to the global community. CRISPR-Cas is currently being used to address therapeutic issues in articular cartilage regeneration by increasing the efficiency of chondrogenic differentiation of iPSC lines and harvesting a more homogeneous population of chondroprogenitor cells. Another approach is to remove the pro-inflammatory cytokine receptor sequence to produce inflammation-resistant cartilage. Finally, knocking out genes for components of the major histocompatibility complex allows harvesting chondrocytes that are invisible to the recipient's immune system. This kind of research contributes to personalized healthcare and can improve the quality of life of the world's population in the long term.
CRISPR-Cas / genome editing / articular cartilage / chondrocytes / hypertrophy / induced pluripotent stem cells / chondrogenesis / regenerative medicine / tissue engineering
| [1] |
Kheir E, Shaw D. Hyaline cular cartilage. Orthop Trauma. 2009;23(6):450–455. doi: 10.1016/j.mporth.2009.01.003 |
| [2] |
Kheir E., Shaw D. Hyaline articular cartilage // Orthop Trauma. 2009. Vol. 23, N. 6. P. 450–455. doi: 10.1016/j.mporth.2009.01.003 |
| [3] |
Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95. doi: 10.1093/bmb/ldn025 |
| [4] |
Bhosale A.M., Richardson J.B. Articular cartilage: structure, injuries and review of management // Br Med Bull. 2008. Vol. 87. P. 77–95. doi: 10.1093/bmb/ldn025 |
| [5] |
Swieszkowski W, Tuan BHS, Kurzydlowski KJ, Hutmacher DW. Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng. 2007;24(5):489–495. doi: 10.1016/j.bioeng.2007.07.014 |
| [6] |
Swieszkowski W., Tuan B.H.S., Kurzydlowski K.J., Hutmacher D.W. Repair and regeneration of osteochondral defects in the articular joints // Biomol Eng. 2007. Vol. 24, N. 5. P. 489–495. doi: 10.1016/j.bioeng.2007.07.014 |
| [7] |
Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002;(402):21–37. doi: 10.1097/00003086-200209000-00004 |
| [8] |
Buckwalter J.A. Articular cartilage injuries // Clin Orthop Relat Res. 2002. Vol. 402. P. 21–37. doi: 10.1097/00003086-200209000-00004 |
| [9] |
Giorgino R, Albano D, Fusco S, et al Knee osteoarthritis: epidemiology, pathogenesis, and mesenchymal stem cells: what else is new? An update. Int J Mol Sci. 2023;24(7):6405. doi: 10.3390/ijms24076405 |
| [10] |
Giorgino R., Albano D., Fusco S., et al. Knee osteoarthritis: epidemiology, pathogenesis, and mesenchymal stem cells: what else is new? An update // Int J Mol Sci. 2023. Vol. 24, N. 7. P. 6405. doi: 10.3390/ijms24076405 |
| [11] |
Steinmetz JD, Culbreth GT, Haile LM, et al. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(9):e508–e522. doi: 10.1016/S2665-9913(23)00163-7 |
| [12] |
GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021 // Lancet Rheumatol. 2023. Vol. 5, N. 9. P. e508–e522. doi: 10.1016/S2665-9913(23)00163-7 |
| [13] |
Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage. 2022;30(2):184–195. doi: 10.1016/j.joca.2021.04.020 |
| [14] |
Allen K.D., Thoma L.M., Golightly Y.M. Epidemiology of osteoarthritis // Osteoarthritis Cartilage. 2022. Vol. 30, N. 2. P. 184–195. doi: 10.1016/j.joca.2021.04.020 |
| [15] |
Muthu S, Korpershoek JV, Novais EJ, et al. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat Rev Rheumatol. 2023;19(7):403–416. doi: 10.1038/s41584-023-00979-5 |
| [16] |
Muthu S., Korpershoek J.V., Novais E.J., et al. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies // Nat Rev Rheumatol. 2023. Vol. 19, N. 7. P. 403–416. doi: 10.1038/s41584-023-00979-5 |
| [17] |
Nam Y, Rim YA, Lee J, Ju JH. Current therapeutic strategies for stem cell-based cartilage regeneration. Stem Cells Int. 2018;2018:8490489. doi: 10.1155/2018/8490489 |
| [18] |
Nam Y., Rim Y.A., Lee J., Ju J.H. Current therapeutic strategies for stem cell-based cartilage regeneration // Stem Cells Int. 2018. Vol. 2018. P. 8490489. doi: 10.1155/2018/8490489 |
| [19] |
Lach MS, Rosochowicz MA, Richter M, et al. The induced pluripotent stem cells in articular cartilage regeneration and disease modelling: are we ready for their clinical use? Cells. 2022;11(3):529. doi: 10.3390/cells11030529 |
| [20] |
Lach M.S., Rosochowicz M.A., Richter M., et al. The induced pluripotent stem cells in articular cartilage regeneration and disease modelling: are we ready for their clinical use? // Cells. 2022. Vol. 11, N. 3. P. 529. doi: 10.3390/cells11030529 |
| [21] |
Medvedeva EV, Grebenik EA, Gornostaeva SN, et al. Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci. 2018;19(8):2366. doi: 10.3390/ijms19082366 |
| [22] |
Medvedeva E.V., Grebenik E.A., Gornostaeva S.N., et al. Repair of damaged articular cartilage: current approaches and future directions // Int J Mol Sci. 2018. Vol. 19, N. 8. P. 2366. doi: 10.3390/ijms19082366 |
| [23] |
Schrock JB, Kraeutler MJ, Houck DA, et al. A cost-effectiveness analysis of surgical treatment modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation. Orthop J Sports Med. 2017;5(5):2325967117704634. doi: 10.1177/2325967117704634 |
| [24] |
Schrock J.B., Kraeutler M.J., Houck D.A., et al. A cost-effectiveness analysis of surgical treatment modalities for chondral lesions of the knee: microfracture, osteochondral autograft transplantation, and autologous chondrocyte implantation // Orthop J Sports Med. 2017. Vol. 5, N. 5. P. 2325967117704634. doi: 10.1177/2325967117704634 |
| [25] |
Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14(11):1119–1125. doi: 10.1016/j.joca.2006.05.003 |
| [26] |
Kreuz P.C., Steinwachs M.R., Erggelet C., et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee // Osteoarthritis Cartilage. 2006. Vol. 14, N. 11. P. 1119–1125. doi: 10.1016/j.joca.2006.05.003 |
| [27] |
Muthu S, Viswanathan VK, Sakthivel M, Thabrez M. Does progress in microfracture techniques necessarily translate into clinical effectiveness? World J Orthop. 2024;15(3):266–284. doi: 10.5312/wjo.v15.i3.266 |
| [28] |
Muthu S., Viswanathan V.K., Sakthivel M., Thabrez M. Does progress in microfracture techniques necessarily translate into clinical effectiveness? // World J Orthop. 2024. Vol. 15, N. 3. P. 266–284. doi: 10.5312/wjo.v15.i3.266 |
| [29] |
Inderhaug E, Solheim E. Osteochondral autograft transplant (mosaicplasty) for knee articular cartilage defects. JBJS Essent Surg Tech. 2019;9(4):e34.1–e34.2. doi: 10.2106%2FJBJS.ST.18.00113 |
| [30] |
Inderhaug E., Solheim E. Osteochondral autograft transplant (mosaicplasty) for knee articular cartilage defects // JBJS Essent Surg Tech. 2019. Vol. 9, N. 4. P. e34.1–e34.2. doi: 10.2106%2FJBJS.ST.18.00113 |
| [31] |
Kotelnikov GP, Kudashev DS, Lartsev YuV, et al. Surgical treatment of the knee joint for chondral defects and a new approach to the role and place of mosaic autochondroplasty. Science & Innovations in Medicine. (In Russ.) (In press). doi: 10.35693/SIM553365 |
| [32] |
Котельников Г.П., Кудашев Д.С., Ларцев Ю.В., и др. Оперативное лечение хондральных дефектов коленного сустава и новый взгляд на роль и место мозаичной аутохондропластики // Наука и инновации в медицине. (In Press). doi: 10.35693/SIM553365 |
| [33] |
Heir S, Årøen A, Løken S, et al. Cartilage repair in the rabbit knee: mosaic plasty resulted in higher degree of tissue filling but affected subchondral bone more than microfracture technique: a blinded, randomized, controlled, long-term follow-up trial in 88 knees. Knee Surg Sports Traumatol Arthrosc. 2012;20(2):197–209. doi: 10.1007/s00167-011-1596-8 |
| [34] |
Heir S., Årøen A., Løken S., et al. Cartilage repair in the rabbit knee: mosaic plasty resulted in higher degree of tissue filling but affected subchondral bone more than microfracture technique: a blinded, randomized, controlled, long-term follow-up trial in 88 knees // Knee Surg Sports Traumatol Arthrosc. 2012. Vol. 20, N. 2. P. 197–209. doi: 10.1007/s00167-011-1596-8 |
| [35] |
Johnstone T, Shea K. ACI & MACI for the management of osteochondritis dissecans. Oper Tech Sports Med. 2023;31(2):151008. doi: 10.1016/j.otsm.2023.151008 |
| [36] |
Johnstone T., Shea K. ACI & MACI for the management of osteochondritis dissecans // Oper Tech Sports Med. 2023. Vol. 31, N. 2. P. 151008. doi: 10.1016/j.otsm.2023.151008 |
| [37] |
Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage — why does hyaline cartilage fail to repair? Adv Drug Deliv Rev. 2019;146:289–305. doi: 10.1016/j.addr.2018.12.015 |
| [38] |
Armiento A.R., Alini M., Stoddart M.J. Articular fibrocartilage — why does hyaline cartilage fail to repair? // Adv Drug Deliv Rev. 2019. Vol. 146. P. 289–305. doi: 10.1016/j.addr.2018.12.015 |
| [39] |
Medellin MR, Fujiwara T, Clark R, et al. Mechanisms of failure and survival of total femoral endoprosthetic replacements. Bone Joint J. 2019;101-B(5):522–528. doi: 10.1302/0301-620X.101B5.BJJ-2018-1106.R1 |
| [40] |
Medellin M.R., Fujiwara T., Clark R., et al. Mechanisms of failure and survival of total femoral endoprosthetic replacements // Bone Joint J. 2019. Vol. 101-B, N. 5. P. 522–528. doi: 10.1302/0301-620X.101B5.BJJ-2018-1106.R1 |
| [41] |
Rodríguez-Merchán EC. The stiff total knee arthroplasty: causes, treatment modalities and results. EFORT Open Rev. 2019;4(10):602–610. doi: 10.1302/2058-5241.4.180105 |
| [42] |
Rodríguez-Merchán E.C. The stiff total knee arthroplasty: causes, treatment modalities and results // EFORT Open Rev. 2019. Vol. 4, N. 10. P. 602–610. doi: 10.1302/2058-5241.4.180105 |
| [43] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024 |
| [44] |
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. Vol. 126, N. 4. P. 663–676. doi: 10.1016/j.cell.2006.07.024 |
| [45] |
Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451(7175):141–146. doi: 10.1038/nature06534 |
| [46] |
Park I.H., Zhao R., West J.A., et al. Reprogramming of human somatic cells to pluripotency with defined factors // Nature. 2008. Vol. 451, N. 7175. P. 141–146. doi: 10.1038/nature06534 |
| [47] |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–872. doi: 10.1016/j.cell.2007.11.019 |
| [48] |
Takahashi K., Tanabe K., Ohnuki M., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors // Cell. 2007. Vol. 131, N. 5. P. 861–872. doi: 10.1016/j.cell.2007.11.019 |
| [49] |
Scesa G, Adami R, Bottai D. iPSC preparation and epigenetic memory: does the tissue origin matter? Cells. 2021;10(6):1470. doi: 10.3390/cells10061470 |
| [50] |
Scesa G., Adami R., Bottai D. iPSC preparation and epigenetic memory: does the tissue origin matter? // Cells. 2021. Vol. 10, N. 6. P. 1470. doi: 10.3390/cells10061470 |
| [51] |
Zahumenska R, Nosal V, Smolar M, et al. Induced pluripotency: a powerful tool for in vitro modeling. Int J Mol Sci. 2020;21(23):8910. doi: 10.3390/ijms21238910 |
| [52] |
Zahumenska R., Nosal V., Smolar M., et al. Induced pluripotency: a powerful tool for in vitro modeling // Int J Mol Sci. 2020. Vol. 21, N. 23. P. 8910. doi: 10.3390/ijms21238910 |
| [53] |
Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery. Cell Stem Cell. 2020;26(3):309–329. doi: 10.1016/j.stem.2020.02.011 |
| [54] |
Sharma A., Sances S., Workman M.J., Svendsen C.N. Multi-lineage human iPSC-derived platforms for disease modeling and drug discovery // Cell Stem Cell. 2020. Vol. 26, N. 3. P. 309–329. doi: 10.1016/j.stem.2020.02.011 |
| [55] |
Park S, Gwon Y, Khan SA, et al. Engineering considerations of iPSC-based personalized medicine. Biomater Res. 2023;27(1):67. doi: 10.1186/s40824-023-00382-x |
| [56] |
Park S., Gwon Y., Khan S.A., et al. Engineering considerations of iPSC-based personalized medicine // Biomater Res. 2023. Vol. 27, N. 1. P. 67. doi: 10.1186/s40824-023-00382-x |
| [57] |
Kim JY, Nam Y, Rim YA, Ju JH. Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Rev Rep. 2022;18(1):142–154. doi: 10.1007/s12015-021-10262-3 |
| [58] |
Kim J.Y., Nam Y., Rim Y.A., Ju J.H. Review of the current trends in clinical trials involving induced pluripotent stem cells // Stem Cell Rev Rep. 2022. Vol. 18, N. 1. P. 142–154. doi: 10.1007/s12015-021-10262-3 |
| [59] |
Oldershaw RA, Baxter MA, Lowe ET, et al. Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotechnol. 2010;28(11):1187–1194. doi: 10.1038/nbt.1683 |
| [60] |
Oldershaw R.A., Baxter M.A., Lowe E.T., et al. Directed differentiation of human embryonic stem cells toward chondrocytes // Nat Biotechnol. 2010. Vol. 28, N. 11. P. 1187–1194. doi: 10.1038/nbt.1683 |
| [61] |
Qu C, Puttonen KA, Lindeberg H, et al. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol. 2013;45(8):1802–1812. doi: 10.1016/j.biocel.2013.05.029 |
| [62] |
Qu C., Puttonen K.A., Lindeberg H., et al. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture // Int J Biochem Cell Biol. 2013. Vol. 45, N. 8. P. 1802–1812. doi: 10.1016/j.biocel.2013.05.029 |
| [63] |
De Kinderen P, Meester J, Loeys B, et al. Differentiation of induced pluripotent stem cells into chondrocytes: methods and applications for disease modeling and drug discovery. J Bone Miner Res. 2022;37(3):397–410. doi: 10.1002/jbmr.4524 |
| [64] |
De Kinderen P., Meester J., Loeys B., et al. Differentiation of induced pluripotent stem cells into chondrocytes: methods and applications for disease modeling and drug discovery // J Bone Miner Res. 2022. Vol. 37, N. 3. P. 397–410. doi: 10.1002/jbmr.4524 |
| [65] |
Van der Kraan PM, Davidson ENB, Blom A, Van den Berg WB. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthritis Cartilage. 2009;17(12):1539–1545. doi: 10.1016/j.joca.2009.06.008 |
| [66] |
Van der Kraan P.M., Davidson E.N.B., Blom A., Van den Berg W.B. TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads // Osteoarthritis Cartilage. 2009. Vol. 17, N. 12. P. 1539–1545. doi: 10.1016/j.joca.2009.06.008 |
| [67] |
Wang W, Rigueur D, Lyons KM. TGFβ signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today. 2014;102(1):37–51. doi: 10.1002/bdrc.21058 |
| [68] |
Wang W., Rigueur D., Lyons K.M. TGFβ signaling in cartilage development and maintenance // Birth Defects Res C Embryo Today. 2014. Vol. 102, N. 1. P. 37–51. doi: 10.1002/bdrc.21058 |
| [69] |
Du X, Cai L, Xie J, Zhou X. The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res. 2023;11(1):2. doi: 10.1038/s41413-022-00239-4 |
| [70] |
Du X., Cai L., Xie J., Zhou X. The role of TGF-beta3 in cartilage development and osteoarthritis // Bone Res. 2023. Vol. 11, N. 1. P. 2. doi: 10.1038/s41413-022-00239-4 |
| [71] |
Koyama N, Miura M, Nakao K, et al. Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem Cells Dev. 2013;22(1):102–113. doi: 10.1089/scd.2012.0127 |
| [72] |
Koyama N., Miura M., Nakao K., et al. Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells // Stem Cells Dev. 2013. Vol. 22, N. 1. P. 102–113. doi: 10.1089/scd.2012.0127 |
| [73] |
Li Y, Liu T, Van Halm-Lutterodt N, et al. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair. Stem Cell Res Ther. 2016;7:31. doi: 10.1186/s13287-016-0290-7 |
| [74] |
Li Y., Liu T., Van Halm-Lutterodt N., et al. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair // Stem Cell Res Ther. 2016. Vol. 7. P. 31. doi: 10.1186/s13287-016-0290-7 |
| [75] |
Kawata M, Mori D, Kanke K, et al. Simple and robust differentiation of human pluripotent stem cells toward chondrocytes by two small-molecule compounds. Stem Cell Reports. 2019;13(3):530–544. doi: 10.1016/j.stemcr.2019.07.012 |
| [76] |
Kawata M., Mori D., Kanke K., et al. Simple and robust differentiation of human pluripotent stem cells toward chondrocytes by two small-molecule compounds // Stem Cell Reports. 2019. Vol. 13, N. 3. P. 530–544. doi: 10.1016/j.stemcr.2019.07.012 |
| [77] |
Cheng A, Kapacee Z, Peng J, et al. Cartilage repair using human embryonic stem cell-derived chondroprogenitors. Stem Cells Transl Med. 2014;3(11):1287–1294. doi: 10.5966/sctm.2014-0101 |
| [78] |
Cheng A., Kapacee Z., Peng J., et al. Cartilage repair using human embryonic stem cell-derived chondroprogenitors // Stem Cells Transl Med. 2014. Vol. 3, N. 11. P. 1287–1294. doi: 10.5966/sctm.2014-0101 |
| [79] |
Diederichs S, Klampfleuthner FAM, Moradi B, Richter W. Chondral differentiation of induced pluripotent stem cells without progression into the endochondral pathway. Front Cell Dev Biol. 2019;7:270. doi: 10.3389/fcell.2019.00270 |
| [80] |
Diederichs S., Klampfleuthner F.A.M., Moradi B., Richter W. Chondral differentiation of induced pluripotent stem cells without progression into the endochondral pathway // Front Cell Dev Biol. 2019. Vol. 7. P. 270. doi: 10.3389/fcell.2019.00270 |
| [81] |
Okutani Y, Abe K, Yamashita A, et al. Generation of monkey induced pluripotent stem cell-derived cartilage lacking major histocompatibility complex class I molecules on the cell surface. Tissue Eng Part A. 2022;28(1-2):94–106. doi: 10.1089/ten.TEA.2021.0053 |
| [82] |
Okutani Y., Abe K., Yamashita A., et al. Generation of monkey induced pluripotent stem cell-derived cartilage lacking major histocompatibility complex class I molecules on the cell surface // Tissue Eng Part A. 2022. Vol. 28, N. 1-2. P. 94–106. doi: 10.1089/ten.TEA.2021.0053 |
| [83] |
Craft AM, Rockel JS, Nartiss Y, et al. Generation of articular chondrocytes from human pluripotent stem cells. Nat Biotechnol. 2015;33(6):638–645. doi: 10.1038/nbt.3210 |
| [84] |
Craft A.M., Rockel J.S., Nartiss Y., et al. Generation of articular chondrocytes from human pluripotent stem cells // Nat Biotechnol. 2015. Vol. 33, N. 6. P. 638–645. doi: 10.1038/nbt.3210 |
| [85] |
Lach MS, Wroblewska J, Kulcenty K, et al. Chondrogenic differentiation of pluripotent stem cells under controllable serum-free conditions. Int J Mol Sci. 2019;20(11):2711. doi: 10.3390/ijms20112711 |
| [86] |
Lach M.S., Wroblewska J., Kulcenty K., et al. Chondrogenic differentiation of pluripotent stem cells under controllable serum-free conditions // Int J Mol Sci. 2019. Vol. 20, N. 11. P. 2711. doi: 10.3390/ijms20112711 |
| [87] |
Prosser A, Scotchford C, Roberts G, et al. Integrated multi-assay culture model for stem cell chondrogenic differentiation. Int J Mol Sci. 2019;20(4):951. doi: 10.3390/ijms20040951 |
| [88] |
Prosser A., Scotchford C., Roberts G., et al. Integrated multi-assay culture model for stem cell chondrogenic differentiation // Int J Mol Sci. 2019. Vol. 20, N. 4. P. 951. doi: 10.3390/ijms20040951 |
| [89] |
Caron MMJ, Emans PJ, Coolsen MME, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage. 2012;20(10):1170–1178. doi: 10.1016/j.joca.2012.06.016 |
| [90] |
Caron M.M.J., Emans P.J., Coolsen M.M., et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures // Osteoarthritis Cartilage. 2012. Vol. 20, N. 10. P. 1170–1178. doi: 10.1016/j.joca.2012.06.016 |
| [91] |
Hu X, Zhang W, Li X, et al. Strategies to modulate the redifferentiation of chondrocytes. Front Bioeng Biotechnol. 2021;9:764193. doi: 10.3389/fbioe.2021.764193 |
| [92] |
Hu X., Zhang W., Li X., et al. Strategies to modulate the redifferentiation of chondrocytes // Front Bioeng Biotechnol. 2021. Vol. 9. P. 764193. doi: 10.3389/fbioe.2021.764193 |
| [93] |
Yamashita A, Tsumaki N. Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells. Dev Growth Differ. 2021;63(1):72–81. doi: 10.1111/dgd.12706 |
| [94] |
Yamashita A., Tsumaki N. Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells // Dev Growth Differ. 2021. Vol. 63, N. 1. P. 72–81. doi: 10.1111/dgd.12706 |
| [95] |
Chang YH, Wu KC, Ding DC. Induced pluripotent stem cell-differentiated chondrocytes repair cartilage defect in a rabbit osteoarthritis model. Stem Cells Int. 2020;2020:8867349. doi: 10.1155/2020/8867349 |
| [96] |
Chang Y.H., Wu K.C., Ding D.C. Induced pluripotent stem cell-differentiated chondrocytes repair cartilage defect in a rabbit osteoarthritis model // Stem Cells Int. 2020. Vol. 2020. P. 8867349. doi: 10.1155/2020/8867349 |
| [97] |
Abe K, Yamashita A, Morioka M, et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat Commun. 2023;14(1):804. doi: 10.1038/s41467-023-36408-0 |
| [98] |
Abe K., Yamashita A., Morioka M., et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect // Nat Commun. 2023. Vol. 14, N. 1. P. 804. doi: 10.1038/s41467-023-36408-0 |
| [99] |
Arzi B, DuRaine GD, Lee CA, et al. Cartilage immunoprivilege depends on donor source and lesion location. Acta Biomater. 2015;23:72–81. doi: 10.1016/j.actbio.2015.05.025 |
| [100] |
Arzi B., DuRaine G.D., Lee C.A., et al. Cartilage immunoprivilege depends on donor source and lesion location // Acta Biomater. 2015. Vol. 23. P. 72–81. doi: 10.1016/j.actbio.2015.05.025 |
| [101] |
Garrity C, Arzi B, Haus B, et al. A fresh glimpse into cartilage immune privilege. Cartilage. 2022;13(4):119–132. doi: 10.1177/19476035221126349 |
| [102] |
Garrity C., Arzi B., Haus B., et al. A fresh glimpse into cartilage immune privilege // Cartilage. 2022. Vol. 13, N. 4. P. 119–132. doi: 10.1177/19476035221126349 |
| [103] |
Moskalewski S, Osiecka-Iwan A, Hyc A, Jozwiak J. Mechanical barrier as a protection against rejection of allogeneic cartilage formed in joint surface defects in rats. Cell Transplant. 2000;9(3):349–357. doi: 10.1177/096368970000900306 |
| [104] |
Moskalewski S., Osiecka-Iwan A., Hyc A., Jozwiak J. Mechanical barrier as a protection against rejection of allogeneic cartilage formed in joint surface defects in rats // Cell Transplant. 2000. Vol. 9, N. 3. P. 349–357. doi: 10.1177/096368970000900306 |
| [105] |
Van der Kraan PM. The interaction between joint inflammation and cartilage repair. Tissue Eng Regen Med. 2019;16(4):327–334. doi: 10.1007/s13770-019-00204-z |
| [106] |
Van der Kraan P.M. The interaction between joint inflammation and cartilage repair // Tissue Eng Regen Med. 2019. Vol. 16, N. 4. P. 327–334. doi: 10.1007/s13770-019-00204-z |
| [107] |
Kim K, Doi A, Wen B, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285–290. doi: 10.1038/nature09342 |
| [108] |
Kim K., Doi A., Wen B., et al. Epigenetic memory in induced pluripotent stem cells // // Nature. 2010. Vol. 467, N. 7313. P. 285–290. doi: 10.1038/nature09342 |
| [109] |
Lister R, Pelizzola M, Kida YS, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011;471:68–73. doi: 10.1038/nature09798 Erratum in: Nature. 2014;514(7520):126. |
| [110] |
Lister R., Pelizzola M., Kida Y.S., et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells // Nature. 2011. Vol. 471, N. 7336. P. 68–73. doi: 10.1038/nature09798 Erratum in: Nature. 2014. Vol. 514, N. 7520. P. 126. |
| [111] |
Liu X, Li W, Fu X, Xu Y. The immunogenicity and immune tolerance of pluripotent stem cell derivatives. Front Immunol. 2017;8:645. doi: 10.3389/fimmu.2017.00645 |
| [112] |
Liu X., Li W., Fu X., Xu Y. The immunogenicity and immune tolerance of pluripotent stem cell derivatives // Front Immunol. 2017. Vol. 8. P. 645. doi: 10.3389/fimmu.2017.00645 |
| [113] |
Garreta E, Sanchez S, Lajara J, et al. Roadblocks in the Path of iPSC to the Clinic. Curr Transplant Rep. 2018;5(1):14–18. doi: 10.1007/s40472-018-0177-x |
| [114] |
Garreta E., Sanchez S., Lajara J., et al. Roadblocks in the path of iPSC to the Clinic // Curr Transplant Rep. 2018. Vol. 5, N. 1. P. 14–18. doi: 10.1007/s40472-018-0177-x |
| [115] |
Yoshihara M, Hayashizaki Y, Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Rev Rep. 2017;13(1):7–16. doi: 10.1007/s12015-016-9680-6 |
| [116] |
Yoshihara M., Hayashizaki Y., Murakawa Y. Genomic instability of iPSCs: challenges towards their clinical applications // Stem Cell Rev Rep. 2017. Vol. 13, N. 1. P. 7–16. doi: 10.1007/s12015-016-9680-6 |
| [117] |
Kuang Y, Miki K, Parr CJC, et al. Efficient, selective removal of human pluripotent stem cells via ecto-alkaline phosphatase-mediated aggregation of synthetic peptides. Cell Chem Biol. 2017;24(6):685–694.e4. doi: 10.1016/j.chembiol.2017.04.010 |
| [118] |
Kuang Y., Miki K., Parr C.J.C., et al. Efficient, selective removal of human pluripotent stem cells via ecto-alkaline phosphatase-mediated aggregation of synthetic peptides // Cell Chem Biol. 2017. Vol. 24, N. 6. P. 685–694. doi: 10.1016/j.chembiol.2017.04.010 |
| [119] |
Nguyen TD, Chooi WH, Jeon H, et al. Label-free and high-throughput removal of residual undifferentiated cells from iPSC-derived spinal cord progenitor cells. Stem Cells Transl Med. 2024;13(4):387–398. doi: 10.1093/stcltm/szae002 |
| [120] |
Nguyen T.D., Chooi W.H., Jeon H., et al. Label-free and high-throughput removal of residual undifferentiated cells from iPSC-derived spinal cord progenitor cells // Stem Cells Transl Med. 2024. Vol. 13, N. 4. P. 387–398. doi: 10.1093/stcltm/szae002 |
| [121] |
Chakraborty AR, Vassilev A, Jaiswal SK, et al. Selective elimination of pluripotent stem cells by PIKfyve specific inhibitors. Stem Cell Reports. 2022;17(2):397–412. doi: 10.1016/j.stemcr.2021.12.013 |
| [122] |
Chakraborty A.R., Vassilev A., Jaiswal S.K., et al. Selective elimination of pluripotent stem cells by PIKfyve specific inhibitors // Stem Cell Reports. 2022. Vol. 17, N. 2. P. 397–412. doi: 10.1016/j.stemcr.2021.12.013 |
| [123] |
Takeda M, Ito E, Minami K, et al. Elimination of residual undifferentiated induced pluripotent stem cells (iPSCs) using irradiation for safe clinical applications of iPSC-derived cardiomyocytes. Biochem Biophys Res Commun. 2021;574:91–96. doi: 10.1016/j.bbrc.2021.08.065 |
| [124] |
Takeda M., Ito E., Minami K., et al. Elimination of residual undifferentiated induced pluripotent stem cells (iPSCs) using irradiation for safe clinical applications of iPSC-derived cardiomyocytes // Biochem Biophys Res Commun. 2021. Vol. 574. P. 91–96. doi: 10.1016/j.bbrc.2021.08.065 |
| [125] |
Zhao T, Zhang Z, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–215. doi: 10.1038/nature10135 |
| [126] |
Zhao T., Zhang Z., Rong Z., Xu Y. Immunogenicity of induced pluripotent stem cells // Nature. 2011. Vol. 474, N. 7350. P. 212–215. doi: 10.1038/nature10135 |
| [127] |
Zhao T, Zhang Z, Westenskow PD, et al. Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell. 2015;17(3):353–359. doi: 10.1016/j.stem.2015.07.021 |
| [128] |
Zhao T., Zhang Z., Westenskow P.D., et al. Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells // Cell Stem Cell. 2015. Vol. 17, N. 3. P. 353–359. doi: 10.1016/j.stem.2015.07.021 |
| [129] |
Nakamura Y, Miyagawa S, Yoshida S, et al. Natural killer cells impede the engraftment of cardiomyocytes derived from induced pluripotent stem cells in syngeneic mouse model. Sci Rep. 2019;9(1):10840. doi: 10.1038/s41598-019-47134-3 |
| [130] |
Nakamura Y., Miyagawa S., Yoshida S., et al. Natural killer cells impede the engraftment of cardiomyocytes derived from induced pluripotent stem cells in syngeneic mouse model // Sci Rep. 2019. Vol. 9, N. 1. P. 10840. doi: 10.1038/s41598-019-47134-3 |
| [131] |
Bogomiakova ME, Sekretova EK, Anufrieva KS, et al. iPSC-derived cells lack immune tolerance to autologous NK-cells due to imbalance in ligands for activating and inhibitory NK-cell receptors. Stem Cell Res Ther. 2023;14(1):77. doi: 10.1186/s13287-023-03308-5 |
| [132] |
Bogomiakova M.E., Sekretova E.K., Anufrieva K.S., et al. iPSC-derived cells lack immune tolerance to autologous NK-cells due to imbalance in ligands for activating and inhibitory NK-cell receptors // Stem Cell Res Ther. 2023. Vol. 14, N. 1. P. 77. doi: 10.1186/s13287-023-03308-5 |
| [133] |
Bogomiakova ME, Bogomazova AN, Lagarkova MA. Dysregulation of immune tolerance to autologous iPSCs and their differentiated derivatives. Biochemistry (Mosc). 2024;89(5):799–816. doi: 10.1134/S0006297924050031 |
| [134] |
Bogomiakova M.E., Bogomazova A.N., Lagarkova M.A. Dysregulation of immune tolerance to autologous iPSCs and their differentiated derivatives // Biochemistry (Mosc). 2024. Vol. 89, N. 5. P. 799–816. doi: 10.1134/S0006297924050031 |
| [135] |
Sullivan S, Stacey GN, Akazawa C, et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen Med. 2018;13(7):859–866. doi: 10.2217/rme-2018-0095 |
| [136] |
Sullivan S., Stacey G.N., Akazawa C., et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines // Regen Med. 2018. Vol. 13, N. 7. P. 859–866. doi: 10.2217/rme-2018-0095 |
| [137] |
Dashnau JL, Xue Q, Nelson M, et al. A risk-based approach for cell line development, manufacturing and characterization of genetically engineered, induced pluripotent stem cell–derived allogeneic cell therapies. Cytotherapy. 2023;25(1):1–13. doi: 10.1016/j.jcyt.2022.08.001 |
| [138] |
Dashnau J.L, Xue Q., Nelson M., et al. A risk-based approach for cell line development, manufacturing and characterization of genetically engineered, induced pluripotent stem cell–derived allogeneic cell therapies // Cytotherapy. 2023. Vol. 25, N. 1. P. 1–13. doi: 10.1016/j.jcyt.2022.08.001 |
| [139] |
Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–782. doi: 10.1534/genetics.111.131433 |
| [140] |
Carroll D. Genome engineering with zinc-finger nucleases // Genetics. 2011. Vol. 188, N. 4. P. 773–782. doi: 10.1534/genetics.111.131433 |
| [141] |
Sanjana NE, Cong L, Zhou Y, et al. A transcription activator-like effector toolbox for genome engineering. Nat Protoc. 2012;7(1):171–192. doi: 10.1038/nprot.2011.431 |
| [142] |
Sanjana N.E., Cong L., Zhou Y., et al. A transcription activator-like effector toolbox for genome engineering // Nat Protoc. 2012. Vol. 7, N. 1. P. 171–192. doi: 10.1038/nprot.2011.431 |
| [143] |
Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9(6):467–477. doi: 10.1038/nrmicro2577 |
| [144] |
Makarova K.S., Haft D.H., Barrangou R., et al. Evolution and classification of the CRISPR-Cas systems // Nat Rev Microbiol. 2011. Vol. 9, N. 6. P. 467–477. doi: 10.1038/nrmicro2577 |
| [145] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821. doi: 10.1126/science.1225829 |
| [146] |
Jinek M., Chylinski K., Fonfara I., et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity // Science. 2012. Vol. 337, N. 6096. P. 816–821. doi: 10.1126/science.1225829 |
| [147] |
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi: 10.1126/science.1258096 |
| [148] |
Doudna J.A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9 // Science. 2014. Vol. 346, N. 6213. P. 1258096. doi: 10.1126/science.1258096 |
| [149] |
Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26. doi: 10.1016/j.jconrel.2017.09.012 |
| [150] |
Liu C., Zhang L., Liu H., Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications // J Control Release. 2017. Vol. 266. P. 17–26. doi: 10.1016/j.jconrel.2017.09.012 |
| [151] |
Khoshandam M, Soltaninejad H, Mousazadeh M, et al. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis. 2023;11(1):268–282. doi: 10.1016/j.gendis.2023.02.027 |
| [152] |
Khoshandam M., Soltaninejad H., Mousazadeh M., et al. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine // Genes Dis. 2023. Vol. 11, N. 1. P. 268–282. doi: 10.1016/j.gendis.2023.02.027 |
| [153] |
Koike-Yusa H, Li Y, Tan EP, et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32(3):267–273. doi: 10.1038/nbt.2800 |
| [154] |
Koike-Yusa H., Li Y., Tan EP., et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library // Nat Biotechnol. 2014. Vol. 32, N. 3. P. 267–273. doi: 10.1038/nbt.2800 |
| [155] |
Maggio I, Holkers M, Liu J, et al. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep. 2014;4:5105. doi: 10.1038/srep05105 |
| [156] |
Maggio I., Holkers M., Liu J., et al. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells // Sci Rep. 2014. Vol. 4. P. 5105. doi: 10.1038/srep05105 |
| [157] |
Shalem O, Sanjana NE, Hartenian E, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343(6166):84–87. doi: 10.1126/science.1247005 |
| [158] |
Shalem O., Sanjana N.E., Hartenian E., et al. Genome-scale CRISPR-Cas9 knockout screening in human cells // Science. 2014. Vol. 343, N. 6166. P. 84–87. doi: 10.1126/science.1247005 |
| [159] |
Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361(6405):866–869. doi: 10.1126/science.aat5011 |
| [160] |
Knott G.J., Doudna J.A. CRISPR-Cas guides the future of genetic engineering // Science. 2018. Vol. 361, N. 6405. P. 866–869. doi: 10.1126/science.aat5011 |
| [161] |
Waltz E. With a free pass, CRISPR-edited plants reach market in record time. Nat Biotechnol. 2018;36(1):6–7. doi: 10.1038/nbt0118-6b |
| [162] |
Waltz E. With a free pass, CRISPR-edited plants reach market in record time // Nat Biotechnol. 2018. Vol. 36, N. 1. P. 6–7. doi: 10.1038/nbt0118-6b |
| [163] |
Staahl BT, Benekareddy M, Coulon-Bainier C, et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat Biotechnol. 2017;35(5):431–434. doi: 10.1038/nbt.3806 |
| [164] |
Staahl B.T., Benekareddy M., Coulon-Bainier C., et al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes // Nat Biotechnol. 2017. Vol. 35, N. 5. P. 431–434. doi: 10.1038/nbt.3806 |
| [165] |
Zhang Y, Long C, Li H, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv. 2017;3(4):e1602814. doi: 10.1126/sciadv.1602814 |
| [166] |
Zhang Y., Long C., Li H., et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice // Sci Adv. 2017. Vol. 3, N. 4. P. e1602814. doi: 10.1126/sciadv.1602814 |
| [167] |
Adkar SS, Wu CL, Willard VP, et al. Step-wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing. Stem Cells. 2019;37(1):65–76. doi: 10.1002/stem.2931 |
| [168] |
Adkar S.S., Wu C.L., Willard V.P., et al. Step-wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing // Stem Cells. 2019. Vol. 37, N. 1. P. 65–76. doi: 10.1002/stem.2931 |
| [169] |
Dicks A, Wu CL, Steward N, et al. Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter. Stem Cell Res Ther. 2020;11(1):66. doi: 10.1186/s13287-020-01597-8 |
| [170] |
Dicks A., Wu C.L., Steward N., et al. Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter // Stem Cell Res Ther. 2020. Vol. 11, N. 1. P. 66. doi: 10.1186/s13287-020-01597-8 |
| [171] |
Al-Maslamani NA, Oldershaw R, Tew S, et al. Chondrocyte de-differentiation: Biophysical cues to nuclear alterations. Cells. 2022;11(24):4011. doi: 10.3390/cells11244011 |
| [172] |
Al-Maslamani N.A., Oldershaw R., Tew S., et al. Chondrocyte de-differentiation: Biophysical cues to nuclear alterations // Cells. 2022. Vol. 11, N. 24. P. 4011. doi: 10.3390/cells11244011 |
| [173] |
Hallett SA, Ono W, Ono N. The hypertrophic chondrocyte: To be or not to be. Histol Histopathol. 2021;36(10):1021–1036. doi: 10.14670/HH-18-355 |
| [174] |
Hallett S.A., Ono W., Ono N. The hypertrophic chondrocyte: To be or not to be // Histol Histopathol. 2021. Vol. 36, N. 10. P. 1021–1036. doi: 10.14670/HH-18-355 |
| [175] |
Kamakura T, Jin Y, Nishio M, et al. Collagen X is dispensable for hypertrophic differentiation and endochondral ossification of human iPSC derived chondrocytes. JBMR Plus. 2023;7(5):e10737. doi: 10.1002/jbm4.10737 |
| [176] |
Kamakura T., Jin Y., Nishio M., et al. Collagen X Is dispensable for hypertrophic differentiation and endochondral ossification of human iPSC derived chondrocytes // JBMR Plus. 2023. Vol. 7, N. 5. P. e10737. doi: 10.1002/jbm4.10737 |
| [177] |
Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res. 2005;8(1):11–17. doi: 10.1111/j.1601-6343.2004.00308.x |
| [178] |
Shen G. The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage // Orthod Craniofac Res. 2005. Vol. 8, N. 1. P. 11–17. doi: 10.1111/j.1601-6343.2004.00308.x |
| [179] |
Park S, Bello A, Arai Y, et al. Functional duality of chondrocyte hypertrophy and biomedical application trends in osteoarthritis. Pharmaceutics. 2021;13(8):1139. doi: 10.3390/pharmaceutics13081139 |
| [180] |
Park S., Bello A., Arai Y., et al. Functional duality of chondrocyte hypertrophy and biomedical application trends in osteoarthritis // Pharmaceutics. 2021. Vol. 13, N. 8. P. 1139. doi: 10.3390/pharmaceutics13081139 |
| [181] |
Chen N, Wu RWH, Lam Y, et al. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep. 2023;19:101698. doi: 10.1016/j.bonr.2023.101698 |
| [182] |
Chen N., Wu R.W.H., Lam Y., et al. Hypertrophic chondrocytes at the junction of musculoskeletal structures // Bone Rep. 2023. Vol. 19. P. 101698. doi: 10.1016/j.bonr.2023.101698 |
| [183] |
Dicks AR, Maksaev GI, Harissa Z, et al. Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes. Elife. 2023;12:e71154. doi: 10.7554/eLife.71154 |
| [184] |
Dicks A.R., Maksaev G.I., Harissa Z., et al. Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes // Elife. 2023. Vol. 12. P. e71154. doi: 10.7554/eLife.71154 |
| [185] |
Krakow D, Rimoin DL. The skeletal dysplasias. Genet Med. 2010;12(6):327–341. doi: 10.1097/GIM.0b013e3181daae9b |
| [186] |
Krakow D., Rimoin D.L. The skeletal dysplasias // Genet Med. 2010. Vol. 12, N 6. P. 327–341. doi: 10.1097/GIM.0b013e3181daae9b |
| [187] |
Glass KA, Link JM, Brunger JM, et al. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials. 2014;35(22):5921–5931. doi: 10.1016/j.biomaterials.2014.03.073 |
| [188] |
Glass K.A., Link J.M., Brunger J.M., et al. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties // Biomaterials. 2014. Vol. 35, N. 22. P. 5921–5931. doi: 10.1016/j.biomaterials.2014.03.073 |
| [189] |
Blasioli DJ, Matthews GL, Kaplan DL. The degradation of chondrogenic pellets using cocultures of synovial fibroblasts and U937 cells. Biomaterials. 2014;35(4):1185–1191. doi: 10.1016/j.biomaterials.2013.10.050 |
| [190] |
Blasioli D.J., Matthews G.L., Kaplan D.L. The degradation of chondrogenic pellets using cocultures of synovial fibroblasts and U937 cells // Biomaterials. 2014. Vol. 35, N. 4. P. 1185–1191. doi: 10.1016/j.biomaterials.2013.10.050 |
| [191] |
Willard VP, Diekman BO, Sanchez-Adams J, et al. Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Arthritis Rheumatol. 2014;66(11):3062–3072. doi: 10.1002/art.38780 |
| [192] |
Willard V.P., Diekman B.O., Sanchez-Adams J., et al. Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening // Arthritis Rheumatol. 2014. Vol. 66, N. 11. P. 3062–3072. doi: 10.1002/art.38780 |
| [193] |
Ramos-Casals M, Brito-Zerón P, Soto MJ, et al. Autoimmune diseases induced by TNF-targeted therapies. Best Pract Res Clin Rheumatol. 2008;22(5):847–861. doi: 10.1016/j.berh.2008.09.008 |
| [194] |
Ramos-Casals M., Brito-Zerón P., Soto M.J., et al. Autoimmune diseases induced by TNF-targeted therapies // Best Pract Res Clin Rheumatol. 2008. Vol. 22, N. 5. P. 847–861. doi: 10.1016/j.berh.2008.09.008 |
| [195] |
Brunger JM, Zutshi A, Willard VP, et al. CRISPR/Cas9 editing of murine induced pluripotent stem cells for engineering inflammation-resistant tissues. Arthritis Rheumatol. 2017;69(5):1111–1121. doi: 10.1002/art.39982 |
| [196] |
Brunger J.M., Zutshi A., Willard V.P., et al. CRISPR/Cas9 editing of murine induced pluripotent stem cells for engineering inflammation-resistant tissues // Arthritis Rheumatol. 2017. Vol. 69, N. 5. P. 1111–1121. doi: 10.1002/art.39982 |
| [197] |
Peng H, Tan L, Osaki M, et al. ESE-1 is a potent repressor of type II collagen gene (COL2A1) transcription in human chondrocytes. J Cell Physiol. 2008;215(2):562–573. doi: 10.1002/jcp.21338 |
| [198] |
Peng H., Tan L., Osaki M., et al. ESE-1 is a potent repressor of type II collagen gene (COL2A1) transcription in human chondrocytes // J Cell Physiol. 2008. Vol. 215, N. 2. P. 562–573. doi: 10.1002/jcp.21338 |
| [199] |
Heldens GTH, Blaney Davidson EN, Vitters EL, et al. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells. Tissue Eng Part A. 2012;18(1-2):45–54. doi: 10.1089/ten.TEA.2011.0083 |
| [200] |
Heldens G.T.H., Blaney Davidson E.N., Vitters E.L., et al. Catabolic factors and osteoarthritis-conditioned medium inhibit chondrogenesis of human mesenchymal stem cells // Tissue Eng Part A. 2012. Vol. 18, N. 1-2. P. 45–54. doi: 10.1089/ten.TEA.2011.0083 |
| [201] |
Kapoor M, Martel-Pelletier J, Lajeunesse D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42. doi: 10.1038/nrrheum.2010.196 |
| [202] |
Kapoor M., Martel-Pelletier J., Lajeunesse D., et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis // Nat Rev Rheumatol. 2011. Vol. 7, N. 1. P. 33–42. doi: 10.1038/nrrheum.2010.196 |
| [203] |
Li C, Chen S, Zhou Y, et al. Application of induced pluripotent stem cell transplants: Autologous or allogeneic? Life Sci. 2018;212:145–149. doi: 10.1016/j.lfs.2018.09.057 |
| [204] |
Li C., Chen S., Zhou Y., et al. Application of induced pluripotent stem cell transplants: Autologous or allogeneic? // Life Sci. 2018. Vol. 212. P. 145–149. doi: 10.1016/j.lfs.2018.09.057 |
| [205] |
Chhabra A. Derivation of human induced pluripotent stem cell (iPSC) lines and mechanism of pluripotency: historical perspective and recent advances. Stem Cell Rev Rep. 2017;13(6):757–773. doi: 10.1007/s12015-017-9766-9 |
| [206] |
Chhabra A. Derivation of human induced pluripotent stem cell (iPSC) lines and mechanism of pluripotency: historical perspective and recent advances // Stem Cell Rev Rep. 2017. Vol. 13, N. 6. P. 757–773. doi: 10.1007/s12015-017-9766-9 |
| [207] |
Fairchild PJ. The challenge of immunogenicity in the quest for induced pluripotency. Nat Rev Immunol. 2010;10(12):868–875. doi: 10.1038/nri2878 |
| [208] |
Fairchild P.J. The challenge of immunogenicity in the quest for induced pluripotency // Nat Rev Immunol. 2010. Vol. 10, N. 12. P. 868–875. doi: 10.1038/nri2878 |
| [209] |
Bogomiakova ME, Eremeev AV, Lagarkova MA. At home among strangers: is it possible to create hypoimunogenic pluripotent stem cell lines? Molecular Biology. 2019;53(5):638–652. (In Russ.) EDN: TZNNEO doi: 10.1134/S0026893319050042 |
| [210] |
Богомякова М.Е., Еремеев А.В., Лагарькова М.А. «Свой среди чужих»: можно ли создать гипоиммуногенные линии плюрипотентных стволовых клеток? // Молекулярная биология. 2019. Т. 53, № 5. P. 725–740. EDN: ODQOJP doi: 10.1134/S0026898419050045 |
| [211] |
Blume OR, Yost SE, Kaplan B. Antibody-mediated rejection: pathogenesis, prevention, treatment, and outcomes. J Transplant. 2012;2012:201754. doi: 10.1155/2012/201754 |
| [212] |
Blume O.R., Yost S.E., Kaplan B. Antibody-mediated rejection: pathogenesis, prevention, treatment, and outcomes // J Transplant. 2012. Vol. 2012. P. 201754. doi: 10.1155/2012/201754 |
| [213] |
Ayala García MA, González Yebra B, López Flores AL, Guaní Guerra E. The major histocompatibility complex in transplantation. J Transplant. 2012;2012:842141. doi: 10.1155/2012/842141 |
| [214] |
Ayala García M.A., González Yebra B., López Flores A.L., Guaní Guerra E. The major histocompatibility complex in transplantation // J Transplant. 2012. Vol. 2012. P. 842141. doi: 10.1155/2012/842141 |
| [215] |
Yoshida S, Kato TM, Sato Y, et al. A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med. 2023;4(1):51–66.e10. doi: 10.1016/j.medj.2022.10.003 |
| [216] |
Yoshida S., Kato T.M., Sato Y., et al. A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population // Med. 2023. Vol. 4, N. 1. P. 51–66. doi: 10.1016/j.medj.2022.10.003 |
| [217] |
Okita K, Matsumura Y, Sato Y, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8(5):409–412. doi: 10.1038/nmeth.1591 |
| [218] |
Okita K., Matsumura Y., Sato Y., et al. A more efficient method to generate integration-free human iPS cells // Nat Methods. 2011. Vol. 8, N. 5. P. 409–412. doi: 10.1038/nmeth.1591 |
| [219] |
Pappas DJ, Gourraud PA, Le Gall C, et al. Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the California population: evaluating matching in a multiethnic and admixed population. Stem Cells Transl Med. 2015;4(5):413–418. doi: 10.5966/sctm.2015-0052 |
| [220] |
Pappas D.J., Gourraud P.A., Le Gall C., et al. Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the California population: evaluating matching in a multiethnic and admixed population // Stem Cells Transl Med. 2015. Vol. 4, N. 5. P. 413–418. doi: 10.5966/sctm.2015-0052 |
| [221] |
Taylor CJ, Peacock S, Chaudhry AN, et al. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11(2):147–152. doi: 10.1016/j.stem.2012.07.014 |
| [222] |
Taylor C.J., Peacock S., Chaudhry A.N., et al. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types // Cell Stem Cell. 2012. Vol. 11, N. 2. P. 147–152. doi: 10.1016/j.stem.2012.07.014 |
| [223] |
Gorin IO, Petrushenko VS, Zapisetskaya YuS, et al. Population-based biobank for analyzing the frequencies of clinically relevant DNA markers in the Russian population: bioinformatic aspects. Cardiovascular Therapy and Prevention. 2020;19(6):168–178. EDN: LLGORO doi: 10.15829/1728-8800-2020-2732 |
| [224] |
Горин И.О., Петрушенко В.С., Записецкая Ю.С., и др. Применение популяционного биобанка для анализа частот клинически значимых ДНК-маркеров у населения России: биоинформатические аспекты // Кардиоваскулярная терапия и профилактика. 2020. Т. 19, № 6. P. 168–178. EDN: LLGORO doi: 10.15829/1728-8800-2020-2732 |
| [225] |
Khamaganova EG, Leonov EA, Abdrakhimova AR, et al. HLA diversity in the Russian population assessed by next generation sequencing. Medicinskaja immunologija. 2021;23(3):509–522. EDN: TRNANW doi: 10.15789/1563-0625-HDI-2182 |
| [226] |
Хамаганова Е.Г., Леонов Е.А., Абдрахимова А.Р., и др. HLA генетическое разнообразие русской популяции, выявленное методом секвенирования следующего поколения // Медицинская иммунология. 2021. Т. 23, № 3. P. 509–522. EDN: TRNANW doi: 10.15789/1563-0625-HDI-2182 |
| [227] |
Jang Y, Choi J, Park N, et al. Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Exp Mol Med. 2019;51(1):1–11. doi: 10.1038/s12276-018-0190-2 |
| [228] |
Jang Y., Choi J., Park N., et al. Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering // Exp Mol Med. 2019. Vol. 51, N. 1. P. 1–11. doi: 10.1038/s12276-018-0190-2 |
| [229] |
Osiecka-Iwan A, Hyc A, Radomska-Leśniewska DM, et al. Antigenic and immunogenic properties of chondrocytes. Implications for chondrocyte therapeutic transplantation and pathogenesis of inflammatory and degenerative joint diseases. Cent Eur J Immunol. 2018;43(2):209–219. doi: 10.5114/ceji.2018.77392 |
| [230] |
Osiecka-Iwan A., Hyc A., Radomska-Leśniewska D.M., et al. Antigenic and immunogenic properties of chondrocytes. Implications for chondrocyte therapeutic transplantation and pathogenesis of inflammatory and degenerative joint diseases // Cent Eur J Immunol. 2018. Vol. 43, N. 2. P. 209–219. doi: 10.5114/ceji.2018.77392 |
| [231] |
Adkisson HD, Milliman C, Zhang X, et al. Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage. Stem Cell Res. 2010;4(1):57–68. doi: 10.1016/j.scr.2009.09.004 |
| [232] |
Adkisson H.D., Milliman C., Zhang X., et al. Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage // Stem Cell Res. 2010. Vol. 4, N. 1. P. 57–68. doi: 10.1016/j.scr.2009.09.004 |
| [233] |
Carreno BM, Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol. 2002;20:29–53. doi: 10.1146/annurev.immunol.20.091101.091806 |
| [234] |
Carreno B.M., Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses // Annu Rev Immunol. 2002. Vol. 20. P. 29–53. doi: 10.1146/annurev.immunol.20.091101.091806 |
| [235] |
Lance EM, Kimura LH, Manibog CN. The expression of major histocompatibility antigens on human articular chondrocytes. Clin Orthop Relat Res. 1993;(291):266–282. |
| [236] |
Lance E.M., Kimura L.H., Manibog C.N. The expression of major histocompatibility antigens on human articular chondrocytes // Clin Orthop Relat Res. 1993. Vol. 291. P. 266–282. |
| [237] |
Lim CL, Lee YJ, Cho JH, et al. Immunogenicity and immunomodulatory effects of the human chondrocytes, hChonJ. BMC Musculoskelet Disord. 2017;18(1):199. doi: 10.1186/s12891-017-1547-8 |
| [238] |
Lim C.L., Lee Y.J., Cho J.H., et al. Immunogenicity and immunomodulatory effects of the human chondrocytes, hChonJ // BMC Musculoskelet Disord. 2017. Vol. 18, N. 1. P. 199. doi: 10.1186/s12891-017-1547-8 |
| [239] |
Huey DJ, Sanchez-Adams J, Willard VP, Athanasiou KA. Immunogenicity of bovine and leporine articular chondrocytes and meniscus cells. Tissue Eng Part A. 2012;18(5-6):568–575. doi: 10.1089/ten.TEA.2011.0226 |
| [240] |
Huey D.J., Sanchez-Adams J., Willard V.P., Athanasiou K.A. Immunogenicity of bovine and leporine articular chondrocytes and meniscus cells // Tissue Eng Part A. 2012. Vol. 18, N. 5-6. P. 568–575. doi: 10.1089/ten.TEA.2011.0226 |
| [241] |
Thongsin N, Suwanpitak S, Wattanapanitch M. CRISPR-Cas9-mediated disruption of B2M and CIITA genes eliminates HLA class I and II expression in human induced pluripotent stem cells (MUSIi001-A-2). Stem Cell Res. 2023;71:103138. doi: 10.1016/j.scr.2023.103138 |
| [242] |
Thongsin N., Suwanpitak S., Wattanapanitch M. CRISPR-Cas9-mediated disruption of B2M and CIITA genes eliminates HLA class I and II expression in human induced pluripotent stem cells (MUSIi001-A-2) // Stem Cell Res. 2023. Vol. 71. P. 103138. doi: 10.1016/j.scr.2023.103138 |
| [243] |
Thongsin N, Wattanapanitch M. CRISPR/Cas9 ribonucleoprotein complex-mediated efficient B2M knockout in human induced pluripotent stem cells (iPSCs). Methods Mol Biol. 2022;2454:607–624. doi: 10.1007/7651_2021_352 |
| [244] |
Thongsin N., Wattanapanitch M. CRISPR/Cas9 ribonucleoprotein complex-mediated efficient B2M knockout in human induced pluripotent stem cells (iPSCs) // Methods Mol Biol. 2022. Vol. 2454. P. 607–624. doi: 10.1007/7651_2021_352 |
| [245] |
Koga K, Wang B, Kaneko S. Current status and future perspectives of HLA-edited induced pluripotent stem cells. Inflamm Regen. 2020;40:23. doi: 10.1186/s41232-020-00132-9 |
| [246] |
Koga K., Wang B., Kaneko S. Current status and future perspectives of HLA-edited induced pluripotent stem cells // Inflamm Regen. 2020. Vol. 40. P. 23. doi: 10.1186/s41232-020-00132-9 |
| [247] |
Masuda K, Kawamoto H. Possible NK cell-mediated immune responses against iPSC-derived cells in allogeneic transplantation settings. Inflamm Regen. 2021;41(1):2. doi: 10.1186/s41232-020-00150-7 |
| [248] |
Masuda K., Kawamoto H. Possible NK cell-mediated immune responses against iPSC-derived cells in allogeneic transplantation settings // Inflamm Regen. 2021. Vol. 41, N. 1. P. 2. doi: 10.1186/s41232-020-00150-7 |
| [249] |
Moesta AK, Parham P. Diverse functionality among human NK cell receptors for the C1 epitope of HLA-C: KIR2DS2, KIR2DL2, and KIR2DL3. Front Immunol. 2012;3:336. doi: 10.3389/fimmu.2012.00336 |
| [250] |
Moesta A.K., Parham P. Diverse functionality among human NK cell receptors for the C1 epitope of HLA-C: KIR2DS2, KIR2DL2, and KIR2DL3 // Front Immunol. 2012. Vol. 3. P. 336. doi: 10.3389/fimmu.2012.00336 |
| [251] |
Joncker NT, Raulet DH. Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells. Immunol Rev. 2008;224:85–97. doi: 10.1111/j.1600-065X.2008.00658.x |
| [252] |
Joncker N.T., Raulet D.H. Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells // Immunol Rev. 2008. Vol. 224. P. 85–97. doi: 10.1111/j.1600-065X.2008.00658.x |
| [253] |
Xu H, Wang BO, Ono M, et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell. 2019;24(4):566–578.e7. doi: 10.1016/j.stem.2019.02.005 |
| [254] |
Xu H., Wang B.O., Ono M., et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility // Cell Stem Cell. 2019. Vol. 24, N. 4. P. 566–578. doi: 10.1016/j.stem.2019.02.005 |
| [255] |
Deuse T, Hu X, Gravina A, et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol. 2019;37(3):252–258. doi: 10.1038/s41587-022-01426-8 Erratum for: Nat Biotechnol. 2019;37(3):252–258. doi: 10.1038/s41587-019-0016-3 |
| [256] |
Deuse T., Hu X., Gravina A., et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients // Nat Biotechnol. 2019. Vol. 37, N. 3. P. 252–258. doi: 10.1038/s41587-022-01426-8 Erratum for: Nat Biotechnol. 2019. Vol. 37, N. 3. P. 252–258. doi: 10.1038/s41587-019-0016-3 |
| [257] |
Romano E, Trionfini P, Giampietro R, et al. Generation of a homozygous CIITA knockout iPS cell line using the CRISPR-Cas9 system. Stem Cell Res. 2021;57:102580. doi: 10.1016/j.scr.2021.102580 |
| [258] |
Romano E., Trionfini P., Giampietro R., et al. Generation of a homozygous CIITA knockout iPS cell line using the CRISPR-Cas9 system // Stem Cell Res. 2021. Vol. 57. P. 102580. doi: 10.1016/j.scr.2021.102580 |
| [259] |
Hu X, White K, Olroyd AG, et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat Biotechnol. 2024;42(3):413–423. doi: 10.1038/s41587-023-01784-x |
| [260] |
Hu X., White K., Olroyd A.G., et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques // Nat Biotechnol. 2024. Vol. 42, N. 3. P. 413–423. doi: 10.1038/s41587-023-01784-x |
| [261] |
Simkin D, Papakis V, Bustos BI, et al. Homozygous might be hemizygous: CRISPR/Cas9 editing in iPSCs results in detrimental on-target defects that escape standard quality controls. Stem Cell Reports. 2022;17(4):993–1008. doi: 10.1016/j.stemcr.2022.02.008 |
| [262] |
Simkin D., Papakis V., Bustos B.I., et al. Homozygous might be hemizygous: CRISPR/Cas9 editing in iPSCs results in detrimental on-target defects that escape standard quality controls // Stem Cell Reports. 2022. Vol. 17, N. 4. P. 993–1008. doi: 10.1016/j.stemcr.2022.02.008 |
| [263] |
Adikusuma F, Piltz S, Corbett MA, et al. Large deletions induced by Cas9 cleavage. Nature. 2018;560(7717):E8–E9. doi: 10.1038/s41586-018-0380-z |
| [264] |
Adikusuma F., Piltz S., Corbett M.A., et al. Large deletions induced by Cas9 cleavage // Nature. 2018. Vol. 560, N. 7717. P. E8–E9. doi: 10.1038/s41586-018-0380-z |
| [265] |
Leibowitz ML, Papathanasiou S, Doerfler PA, et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat Genet. 2021;53(6):895–905. doi: 10.1038/s41588-021-00838-7 |
| [266] |
Leibowitz M.L., Papathanasiou S., Doerfler P.A., et al. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing // Nat Genet. 2021. Vol. 53, N. 6. P. 895–905. doi: 10.1038/s41588-021-00838-7 |
| [267] |
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–826. doi: 10.1038/nbt.2623 |
| [268] |
Fu Y., Foden J.A., Khayter C., et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells // Nat Biotechnol. 2013. Vol. 31, N. 9. P. 822–826. doi: 10.1038/nbt.2623 |
| [269] |
Yang ZX, Deng DH, Gao ZY, et al. OliTag-seq enhances in cellulo detection of CRISPR-Cas9 off-targets. Commun Biol. 2024;7(1):696. doi: 10.1038/s42003-024-06360-w |
| [270] |
Yang Z.X., Deng D.H., Gao Z.Y., et al. OliTag-seq enhances in cellulo detection of CRISPR-Cas9 off-targets // Commun Biol. 2024. Vol. 7, N. 1. P. 696. doi: 10.1038/s42003-024-06360-w |
| [271] |
Weisheit I, Kroeger JA, Malik R, et al. Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping. Nat Protoc. 2021;16(3):1714–1739. doi: 10.1038/s41596-020-00481-2 |
| [272] |
Weisheit I., Kroeger J.A., Malik R., et al. Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping // Nat Protoc. 2021. Vol. 16, N. 3. P. 1714–1739. doi: 10.1038/s41596-020-00481-2 |
| [273] |
Zhu W, Li M, Wu Y, Hu B. Precise immune tolerance for hPSC derivatives in clinical application. Cell Immunol. 2018;326:15–23. doi: 10.1016/j.cellimm.2017.08.005 |
| [274] |
Zhu W., Li M., Wu Y., Hu B. Precise immune tolerance for hPSC derivatives in clinical application // Cell Immunol. 2018. Vol. 326. P. 15–23. doi: 10.1016/j.cellimm.2017.08.005 |
Eco-Vector
/
| 〈 |
|
〉 |