Evaluation of chondrogenic potential of human dermal fibroblasts after modification with differentiation media and cytokine TGF-β3

Mikhail S. Bozhokin , Daria M. Marchenko , Elena R. Mikhaylova , Bulat R. Rakhimov , Svetlana A. Bozhkova , Yulia S. Korneva , Svetlana A. Aleksandrova , Mikhail G. Khotin

Genes & Cells ›› 2024, Vol. 19 ›› Issue (3) : 372 -386.

PDF (635KB)
Genes & Cells ›› 2024, Vol. 19 ›› Issue (3) : 372 -386. DOI: 10.17816/gc632926
Original Study Articles
research-article

Evaluation of chondrogenic potential of human dermal fibroblasts after modification with differentiation media and cytokine TGF-β3

Author information +
History +
PDF (635KB)

Abstract

BACKGROUND: Hyaline cartilage is an avascular tissue that envelopes the surface of major joints. The regenerative capacity of this tissue is restricted due to its high content of extracellular matrix proteins and its modest number of cells. Articular cartilage recovery remains relevant and yet unresolved to date. Utilizing biomedical products that contain modified cells is a promising approach.

AIM: To examine the effects of various culture media on the chondrogenic modification of cells and to compare the results.

MATERIALS AND METHODS: Human dermal fibroblasts and rabbit multipotent mesenchymal stromal cells were modified using the chondrogenic differentiation medium StemPro or recombinant TGF-β3 protein. Alterations in the expression of genes involved in chondrogenesis (Acan, Tgfβ3, Col2α1, Comp) were assessed using the real-time polymerase chain reaction method ΔΔCt.

RESULTS: It was demonstrated that human dermal fibroblasts can induce chondrogenic modification when used in protein media. This cell type is easy to harvest, does not necessitate special cultivation conditions, is readily scalable, and is suitable for allogeneic transplantation.

CONCLUSION: The obtained data can be employed to develop tissue engineering products for the regeneration of hyaline cartilage using allogeneic dermal fibroblasts.

Keywords

tissue engineering / real-time PCR / multipotent mesenchymal stromal cells / MMSCs / TGF-β3

Cite this article

Download citation ▾
Mikhail S. Bozhokin, Daria M. Marchenko, Elena R. Mikhaylova, Bulat R. Rakhimov, Svetlana A. Bozhkova, Yulia S. Korneva, Svetlana A. Aleksandrova, Mikhail G. Khotin. Evaluation of chondrogenic potential of human dermal fibroblasts after modification with differentiation media and cytokine TGF-β3. Genes & Cells, 2024, 19(3): 372-386 DOI:10.17816/gc632926

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage — why does hyaline cartilage fail to repair? Adv Drug Deliv Rev. 2019;146:289–305. doi: 10.1016/j.addr.2018.12.015

[2]

Armiento A.R., Alini M., Stoddart M.J. Articular fibrocartilage — why does hyaline cartilage fail to repair? // Adv Drug Deliv Rev. 2019. Vol. 146. P. 289–305. doi: 10.1016/j.addr.2018.12.015

[3]

Bozhokin MS, Bozhkova SA, Netyl’ko GI, et al. Experimental results of rat hyaline cartilage surface defect replacement with a cell engineering structure. Trudy Karel’skogo nauchnogo centra RAN. 2018;(4):13–22. EDN: UWOZZU doi: 10.17076/them815

[4]

Божокин М.С., Божкова С.А., Нетылько Г.И., и др. Результаты замещения поверхностного дефекта гиалинового хряща крысы клеточно-инженерной конструкцией в эксперименте // Труды Карельского научного центра Российской академии наук. 2018. № 4. С. 13–22. EDN: UWOZZU doi: 10.17076/them815

[5]

Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone. 2012;51(2):241–248. doi: 10.1016/j.bone.2012.03.023

[6]

Lotz M., Loeser R.F. Effects of aging on articular cartilage homeostasis // Bone. 2012. Vol. 51, N 2. P. 241–248. doi: 10.1016/j.bone.2012.03.023

[7]

Shane Anderson A, Loeser RF. Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol. 2010;24(1):15–26. doi: 10.1016/j.berh.2009.08.006

[8]

Shane Anderson A., Loeser R.F. Why is osteoarthritis an age-related disease? // Best Pract Res Clin Rheumatol. 2010. Vol. 24, N 1. P. 15–26. doi: 10.1016/j.berh.2009.08.006

[9]

Flanigan DC, Harris JD, Trinh TQ, et al. Prevalence of chondral defects in athletes’ knees: a systematic review. Med Sci Sports Exerc. 2010;42(10):1795–1801. doi: 10.1249/MSS.0b013e3181d9eea0

[10]

Flanigan D.C., Harris J.D., Trinh T.Q., et al. Prevalence of chondral defects in athletes’ knees: a systematic review // Med Sci Sports Exerc. 2010. Vol. 42, N 10. P. 1795–1801. doi: 10.1249/MSS.0b013e3181d9eea0

[11]

Zhong J, Xiang D, Ma X. Prediction and analysis of osteoarthritis hub genes with bioinformatics. Ann Transl Med. 2023;11(2):66. doi: 10.21037/atm-22-6450

[12]

Zhong J., Xiang D., Ma X. Prediction and analysis of osteoarthritis hub genes with bioinformatics // Ann Transl Med. 2023. Vol. 11, N 2. P. 66. doi: 10.21037/atm-22-6450

[13]

Kulkarni K, Karssiens T, Kumar V, Pandit H. Obesity and osteoarthritis. Maturitas. 2016;89:22–28. doi: 10.1016/j.maturitas.2016.04.006

[14]

Kulkarni K., Karssiens T., Kumar V., Pandit H. Obesity and osteoarthritis // Maturitas. 2016. Vol. 89. P. 22–28. doi: 10.1016/j.maturitas.2016.04.006

[15]

Komarraju A, Goldberg-Stein S, Pederson R, et al. Spectrum of common and uncommon causes of knee joint hyaline cartilage degeneration and their key imaging features. Eur J Radiol. 2020;129:109097. doi: 10.1016/j.ejrad.2020.109097

[16]

Komarraju A., Goldberg-Stein S., Pederson R., et al. Spectrum of common and uncommon causes of knee joint hyaline cartilage degeneration and their key imaging features // Eur J Radiol. 2020. Vol. 129. P. 109097. doi: 10.1016/j.ejrad.2020.109097

[17]

Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: Study of 25,124 knee arthroscopies. Knee. 2007;14(3):177–182. doi: 10.1016/j.knee.2007.02.001

[18]

Widuchowski W., Widuchowski J., Trzaska T. Articular cartilage defects: Study of 25,124 knee arthroscopies // Knee. 2007. Vol. 14, N 3. P. 177–182. doi: 10.1016/j.knee.2007.02.001

[19]

Kurtz S, Ong K, Lau E, et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780–785. doi: 10.2106/JBJS.F.00222

[20]

Kurtz S., Ong K., Lau E., et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030 // J Bone Joint Surg Am. 2007. Vol. 89, N 4. P. 780–785. doi: 10.2106/JBJS.F.00222

[21]

Kulyaba TA, Bantser SA, Trachuk PA, et al. The effectiveness of various surgical techniques in the treatment of local knee cartilage lesions (review). Traumatology and Orthopedics of Russia. 2020;26(3):170–181. EDN: XNVJQP doi: 10.21823/2311-2905-2020-26-3-170-181

[22]

Куляба Т.А., Банцер С.А., Трачук П.А., и др. Эффективность различных хирургических методик при лечении локальных повреждений хряща коленного сустава (обзор литературы) // Травматология и ортопедия России. 2020. Т. 26, № 3. С. 170–181. EDN: XNVJQP doi: 10.21823/2311-2905-2020-26-3-170-181

[23]

Krych AJ, Saris DBF, Stuart MJ, Hacken B. Cartilage injury in the knee: assessment and treatment options. J Am Acad Orthop Surg. 2020;28(22):914–922. doi: 10.5435/JAAOS-D-20-00266

[24]

Krych A.J., Saris D.B.F., Stuart M.J., Hacken B. Cartilage injury in the knee: assessment and treatment options // J Am Acad Orthop Surg. 2020. Vol. 28, N 22. P. 914–922. doi: 10.5435/JAAOS-D-20-00266

[25]

March L, Smith EUR, Hoy DG, et al. Burden of disability due to musculoskeletal (MSK) disorders. Best Pract Res Clin Rheumatol. 2014;28(3):353–366. doi: 10.1016/j.berh.2014.08.002

[26]

March L., Smith E.U.R., Hoy D.G., et al. Burden of disability due to musculoskeletal (MSK) disorders // Best Pract Res Clin Rheumatol. 2014. Vol. 28, N 3. P. 353–366. doi: 10.1016/j.berh.2014.08.002

[27]

Musumeci G, Aiello FC, Szychlinska MA, et al. Osteoarthritis in the XXIst century: Risk factors and behaviours that influence disease onset and progression. Int J Mol Sci. 2015;16(3):6093–6112. doi: 10.3390/ijms16036093

[28]

Musumeci G., Aiello F.C., Szychlinska M.A., et al. Osteoarthritis in the XXIst century: Risk factors and behaviours that influence disease onset and progression // Int J Mol Sci. 2015. Vol. 16, N 3. P. 6093–6112. doi: 10.3390/ijms16036093

[29]

Maglio M, Brogini S, Pagani S, et al. Current trends in the evaluation of osteochondral lesion treatments: histology, histomorphometry, and biomechanics in preclinical models. Biomed Res Int. 2019;2019:4040236. doi: 10.1155/2019/4040236

[30]

Maglio M., Brogini S., Pagani S., et al. Current trends in the evaluation of osteochondral lesion treatments: histology, histomorphometry, and biomechanics in preclinical models // Biomed Res Int. 2019. Vol. 2019. P. 4040236. doi: 10.1155/2019/4040236

[31]

Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial. J Bone Joint Surg Am. 2004;86(3):455–464. doi: 10.2106/00004623-200403000-00001

[32]

Knutsen G., Engebretsen L., Ludvigsen T.C., et al. Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial // J Bone Joint Surg Am. 2004. Vol. 86, N 3. P. 455–464. doi: 10.2106/00004623-200403000-00001

[33]

Shevcov VI, Makushin VD, Stupina TA, Stepanov MA. The experimental aspects of studying articular cartilage reparative regeneration under subchondral zone tunneling with autologous bone marrow infusion. Orthopaedic Genius. 2010;(2):5–10. EDN: MHVBCB

[34]

Шевцов В.И., Макушин В.Д., Ступина Т.А., Степанов М.А. Экспериментальные аспекты изучения репаративной регенерации суставного хряща в условиях туннелирования субхондральной зоны с введением аутологичного костного мозга // Гений ортопедии. 2010. № 2. С. 5–10. EDN: MHVBCB

[35]

Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: Surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;(391 Suppl.):S362–S369. doi: 10.1097/00003086-200110001-00033

[36]

Steadman J.R., Rodkey W.G., Rodrigo J.J. Microfracture: Surgical technique and rehabilitation to treat chondral defects // Clin Orthop Relat Res. 2001. Vol. 391, Suppl. P. S362–S369. doi: 10.1097/00003086-200110001-00033

[37]

Korim MT, Esler CNA, Reddy VRM, Ashford RU. A systematic review of endoprosthetic replacement for non-tumour indications around the knee joint. Knee. 2013;20(6):367–375. doi: 10.1016/j.knee.2013.09.001

[38]

Korim M.T., Esler C.N.A., Reddy V.R.M., Ashford R.U. A systematic review of endoprosthetic replacement for non-tumour indications around the knee joint // Knee. 2013. Vol. 20, N 6. P. 367–375. doi: 10.1016/j.knee.2013.09.001

[39]

Shubnyakov II, Riahi A, Denisov AO, et al. The main trends in hip arthroplasty based on the data in the Vreden’s Arthroplasty Register from 2007 to 2020. Traumatology and Orthopedics of Russia. 2021;27(3):119–142. EDN: XSXJQO doi: 10.21823/2311-2905-2021-27-3-119-142

[40]

Шубняков И.И., Риахи А., Денисов А.О., и др. Основные тренды в эндопротезировании тазобедренного сустава на основании данных регистра артропластики НМИЦ ТО им. Р.Р. Вредена с 2007 по 2020 г. // Травматология и ортопедия России. 2021. Т. 27, № 3. С. 119–142. EDN: XSXJQO doi: 10.21823/2311-2905-2021-27-3-119-142

[41]

Jeuken RM, Roth AK, Peters RJRW, et al. Polymers in cartilage defect repair of the knee: Current status and future prospects. Polymers (Basel). 2016;8(6):219. doi: 10.3390/polym8060219

[42]

Jeuken R.M., Roth A.K., Peters R.J.R.W., et al. Polymers in cartilage defect repair of the knee: Current status and future prospects // Polymers (Basel). 2016. Vol. 8, N 6. P. 219. doi: 10.3390/polym8060219

[43]

Makris EA, Gomoll AH, Malizos KN, et al. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11(1):21–34. doi: 10.1038/nrrheum.2014.157

[44]

Makris E.A., Gomoll A.H., Malizos K.N., et al. Repair and tissue engineering techniques for articular cartilage // Nat Rev Rheumatol. 2015. Vol. 11, N 1. P. 21–34. doi: 10.1038/nrrheum.2014.157

[45]

Bozhokin MS, Bozhkova SA, Netylko GI. Possibilitites of current cellular technologies for articular cartilage rapair (analytical review). Traumatology and Orthopedics of Russia. 2016;22(3):122–134. EDN: WYPMYH doi: 10.21823/2311-2905-2016-22-3-122-134

[46]

Божокин М.С., Божкова С.А., Нетылько Г.И. Возможности современных клеточных технологий для восстановления поврежденного суставного хряща (аналитический обзор литературы) // Травматология и ортопедия России. 2016. Т. 22, № 3. C. 122–134. EDN: WYPMYH doi: 10.21823/2311-2905-2016-22-3-122-134

[47]

Zelinka A, Roelofs AJ, Kandel RA, De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthritis Cartilage. 2022;30(12):1547–1560. doi: 10.1016/j.joca.2022.07.012

[48]

Zelinka A., Roelofs A.J., Kandel R.A., De Bari C. Cellular therapy and tissue engineering for cartilage repair // Osteoarthritis Cartilage. 2022. Vol. 30, N 12. P. 1547–1560. doi: 10.1016/j.joca.2022.07.012

[49]

Lammi MJ, Piltti J, Prittinen J, Qu C. Challenges in fabrication of tissue-engineered cartilage with correct cellular colonization and extracellular matrix assembly. Int J Mol Sci. 2018;19(9):2700. doi: 10.3390/ijms19092700

[50]

Lammi M.J., Piltti J., Prittinen J., Qu C. Challenges in fabrication of tissue-engineered cartilage with correct cellular colonization and extracellular matrix assembly // Int J Mol Sci. 2018. Vol. 19, N 9. P. 2700. doi: 10.3390/ijms19092700

[51]

Grigolo B, Lisignoli G, Piacentini A, et al. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAFF®11): Molecular, immunohistochemical and ultrastructural analysis. Biomaterials. 2002;23(4):1187–1195. doi: 10.1016/s0142-9612(01)00236-8

[52]

Grigolo B., Lisignoli G., Piacentini A., et al. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAFF®11): Molecular, immunohistochemical and ultrastructural analysis // Biomaterials. 2002. Vol. 23, N 4. P. 1187–1195. doi: 10.1016/s0142-9612(01)00236-8

[53]

Martinez I, Elvenes J, Olsen R, et al. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment. Cell Transplant. 2008;17(8):987–996. doi: 10.3727/096368908786576499

[54]

Martinez I., Elvenes J., Olsen R., et al. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment // Cell Transplant. Vol. 17, N 8. P. 987–996. doi: 10.3727/096368908786576499

[55]

Bozhokin MS, Bozhkova SA, Netylko GI, et al. Experimental replacement of the surface defect of rat hyaline cartilage by a cell-engineered construct. Regenerative Engineering and Translational Medicine. 2021;7(2):184–193. EDN: MRCHUB doi: 10.1007/s40883-021-00205-2

[56]

Bozhokin M.S., Bozhkova S.A., Netylko G.I., et al. Experimental replacement of the surface defect of rat hyaline cartilage by a cell-engineered construct // Regenerative Engineering and Translational Medicine. 2021. Vol. 7, N 2. P. 184–193. EDN: MRCHUB doi: 10.1007/s40883-021-00205-2

[57]

Shestovskaya MV, Bozhkova SA, Sopova JV, et al. Methods of modification of mesenchymal stem cells and conditions of their culturing for hyaline cartilage tissue engineering. Biomedicines. 2021;9(11):1666. doi: 10.3390/biomedicines9111666

[58]

Shestovskaya M.V., Bozhkova S.A., Sopova J.V., et al. Methods of modification of mesenchymal stem cells and conditions of their culturing for hyaline cartilage tissue engineering // Biomedicines. 2021. Vol. 9, N 11. P. 1666. doi: 10.3390/biomedicines9111666

[59]

Cheng A, Cain SA, Tian P, et al. Recombinant extracellular matrix protein fragments support human embryonic stem cell chondrogenesis. Tissue Eng Part A. 2018;24(11-12):968–978. doi: 10.1089/ten.TEA.2017.0285

[60]

Cheng A., Cain S.A., Tian P., et al. Recombinant extracellular matrix protein fragments support human embryonic stem cell chondrogenesis // Tissue Eng Part A. 2018. Vol. 24, N 11-12. P. 968–978. doi: 10.1089/ten.TEA.2017.0285

[61]

Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. Eur J Pharm Biopharm. 2017;114:69–78. doi: 10.1016/j.ejpb.2016.12.021

[62]

Crecente-Campo J., Borrajo E., Vidal A., Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation // Eur J Pharm Biopharm. 2017. Vol. 114. P. 69–78. doi: 10.1016/j.ejpb.2016.12.021

[63]

Wang J, Sun B, Tian L, et al. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):637–645. doi: 10.1016/j.msec.2016.09.044

[64]

Wang J., Sun B., Tian L., et al. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord // Mater Sci Eng C Mater Biol Appl. 2017. Vol. 70(Pt 1). P. 637–645. doi: 10.1016/j.msec.2016.09.044

[65]

Bozhokin MS, Marchenko DM, Mikhailova ER, et al. Primary results of replacement the experimental hyaline cartilage defect with human fibroblast cell culture. Vestnik medicinskogo instituta “REAVIZ”: reabilitacija, vrach i zdorov’e. 2022;(2):14–21. EDN: FLHDJM doi: 10.20340/vmi-rvz.2022.2.morph.1

[66]

Божокин М.С., Марченко Д.М., Михайлова Е.Р., и др. Замещение дефекта гиалинового хряща клеточной культурой фибробластов человека // Вестник медицинского института «РЕАВИЗ»: реабилитация, врач и здоровье. 2022. № 2. P. 14–21. EDN: FLHDJM doi: 10.20340/vmi-rvz.2022.2.morph.1

[67]

Tsumaki N. Cartilage regeneration using cell reprogramming technologies. Clin Calcium. 2013;23(11):85–98. doi: 10.1007/978-3-319-13266-2_6

[68]

Tsumaki N. Cartilage regeneration using cell reprogramming technologies // Clinical calcium. 2013. Vol. 23, N 11. P. 85–98. doi: 10.1007/978-3-319-13266-2_6

[69]

Gao X, Ruan D, Liu P. Reprogramming porcine fibroblast to EPSCs. Methods Mol Biol. 2021;2239:199–211. doi: 10.1007/978-1-0716-1084-8_13

[70]

Gao X., Ruan D., Liu P. Reprogramming porcine fibroblast to EPSCs // Methods Mol Biol. 2021. Vol. 2239. P. 199–211. doi: 10.1007/978-1-0716-1084-8_13

[71]

Caruso M, Shuttle S, Amelse L, et al. A pilot study to demonstrate the paracrine effect of equine, adult allogenic mesenchymal stem cells in vitro, with a potential for healing of experimentally-created, equine thoracic wounds in vivo. Front Vet Sci. 2022;9:1011905. doi: 10.3389/fvets.2022.1011905

[72]

Caruso M., Shuttle S., Amelse L., et al. A pilot study to demonstrate the paracrine effect of equine, adult allogenic mesenchymal stem cells in vitro, with a potential for healing of experimentally-created, equine thoracic wounds in vivo // Front Vet Sci. 2022. Vol. 9. doi: 10.3389/fvets.2022.1011905

[73]

Hosseinikia R, Nikbakht MR, Moghaddam AA, et al. Molecular and cellular interactions of allogenic and autologus mesenchymal stem cells with innate and acquired immunity and their role in regenerative medicine. Int J Hematol Oncol Stem Cell Res. 2017;11(1):63–77.

[74]

Hosseinikia R., Nikbakht M.R., Moghaddam A.A., et al. Molecular and cellular interactions of allogenic and autologus mesenchymal stem cells with innate and acquired immunity and their role in regenerative medicine // Int J Hematol Oncol Stem Cell Res. 2017. Vol. 11, N 1. P. 63–77.

[75]

Xu B, Wang R, Wang H, Xu HG. Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering. Biosci Rep. 2017;37(6):BSR20170804. doi: 10.1042/BSR20170804

[76]

Xu B., Wang R., Wang H., Xu, H.G. Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering // Biosci Rep. 2017. Vol. 37, N 6. P. BSR20170804. doi: 10.1042/BSR20170804

[77]

Ike S, Ueno K, Yanagihara M, et al. Cryopreserved allogenic fibroblast sheets: development of a promising treatment for refractory skin ulcers. Am J Transl Res. 2022;14(6):3879–3892.

[78]

Ike S., Ueno K., Yanagihara M., et al. Cryopreserved allogenic fibroblast sheets: development of a promising treatment for refractory skin ulcers // Am J Transl Res. 2022. Vol. 14, N 6. P. 3879–3892.

[79]

Yamamoto N, Ueno K, Yanagihara M, et al. Allogenic multilayered fibroblast sheets promote anastomotic site healing in a rat model of esophageal reconstruction. Am J Transl Res. 2023;15(5):3217–3228.

[80]

Yamamoto N., Ueno K., Yanagihara M., et al. Allogenic multilayered fibroblast sheets promote anastomotic site healing in a rat model of esophageal reconstruction // Am J Transl Res. 2023. Vol. 15, N 5. P. 3217–3228.

[81]

Kraskovskaya N, Bolshakova A, Khotin M, et al. Protocol optimization for direct reprogramming of primary human fibroblast into induced striatal neurons. Int J Mol Sci. 2023;24(7):6799. doi: 10.3390/ijms24076799

[82]

Kraskovskaya N., Bolshakova A., Khotin M., et al. Protocol optimization for direct reprogramming of primary human fibroblast into induced striatal neurons // Int J Mol Sci. 2023. Vol. 24, N 7. P. 6799. doi: 10.3390/ijms24076799

[83]

Krylova TA, Musorina AS, Zenin VV, et al. Derivation and characteristic of a non-immortalized cell lines of human dermal fibroblasts, generated from skin of the eyelids of adult donors of different age. Tsitologiya. 2016;58(11):850–864. EDN: XXRUIN

[84]

Крылова А.Т., Мусорина А.С., Зенин В.В., и др. Получение и характеристика неиммортализованных клеточных линий дермальных фибробластов человека, выделенных из кожи век взрослых доноров разного возраста // Цитология. 2016. Т. 58, № 11. С. 850–864. EDN: XXRUIN

[85]

Khorolskaya JI, Perepletchikova DA, Kachkin DV, et al. Derivation and characterization of EGFP-labeled rabbit limbal mesenchymal stem cells and their potential for research in regenerative ophthalmology. Biomedicines. 2021;9(9):1134. doi: 10.3390/biomedicines9091134

[86]

Khorolskaya J.I., Perepletchikova D.A., Kachkin D.V., et al. Derivation and characterization of EGFP-labeled rabbit limbal mesenchymal stem cells and their potential for research in regenerative ophthalmology // Biomedicines. 2021. Vol. 9, N 9. P. 1134. doi: 10.3390/biomedicines9091134

[87]

Schmittgen TD, Livak KJ. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262

[88]

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method // Methods. 2001. Vol. 25, N 4. P. 402–408. doi: 10.1006/meth.2001.1262

[89]

Uz U, Gunhan K, Vatansever S, et al. Novel simple strategy for cartilage tissue engineering using stem cells and synthetic polymer scaffold. J Craniofac Surg. 2019;30(3):940–943. doi: 10.1097/SCS.0000000000005374

[90]

Uz U., Gunhan K., Vatansever S., et al. Novel simple strategy for cartilage tissue engineering using stem cells and synthetic polymer scaffold // J Craniofac Surg. 2019. Vol. 30, N 3. P. 940–943. doi: 10.1097/SCS.0000000000005374

[91]

Nehrer S, Chiari C, Domayer S, et al. Results of chondrocyte implantation with a fibrin-hyaluronan matrix: A preliminary study. Clin Orthop Relat Res. 2008;466(8):1849–1855. doi: 10.1007/s11999-008-0322-4

[92]

Nehrer S., Chiari C., Domayer S., et al. Results of chondrocyte implantation with a fibrin-hyaluronan matrix: A preliminary study // Clin Orthop Relat Res. 2008. Vol. 466, N 8. P. 1849–1855. doi: 10.1007/s11999-008-0322-4

[93]

Schneider U, Rackwitz L, Andereya S, et al. A prospective multicenter study on the outcome of type i collagen hydrogel-based autologous chondrocyte implantation (cares) for the repair of articular cartilage defects in the knee. Am J Sports Med. 2011;39(12):2558–2565. doi: 10.1177/0363546511423369

[94]

Schneider U., Rackwitz L., Andereya S., et al. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (cares) for the repair of articular cartilage defects in the knee // Am J Sports Med. 2011. Vol. 39, N 12. P. 2558–2565. doi: 10.1177/0363546511423369

[95]

Fontana A, Bistolfi A, Crova M, et al. Arthroscopic treatment of hip chondral defects: Autologous chondrocyte transplantation versus simple debridement — a pilot study. Arthroscopy. 2012;28(3):322–329. doi: 10.1016/j.arthro.2011.08.304

[96]

Fontana A., Bistolfi A., Crova M., et al. Arthroscopic treatment of hip chondral defects: Autologous chondrocyte transplantation versus simple debridement — a pilot study // Arthroscopy. 2012. Vol. 28, N 3. P. 322–329. doi: 10.1016/j.arthro.2011.08.304

[97]

Stanish WD, McCormack R, Forriol F, et al. Novel scaffold-based bst-cargel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am. 2013;95(18):1640–1650. doi: 10.2106/JBJS.L.01345

[98]

Stanish W.D., McCormack R., Forriol F., et al. Novel scaffold-based bst-cargel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial // J Bone Joint Surg Am. 2013. Vol. 95, N 18. P. 1640–1650. doi: 10.2106/JBJS.L.01345

[99]

Gobbi A, Scotti C, Karnatzikos G, et al. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2494–2501. doi: 10.1007/s00167-016-3984-6 Corrected and republished from: Knee Surg Sports Traumatol Arthrosc. 2018;26(7):2217. doi: 10.1007/s00167-017-4698-0

[100]

Gobbi A., Scotti C., Karnatzikos G., et al. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years // Knee Surg Sports Traumatol Arthrosc. 2017. Vol. 25, N 8. P. 2494–2501. doi: 10.1007/s00167-017-4698-0 Corrected and republished from: Knee Surg Sports Traumatol Arthrosc. 2018. Vol. 26, N 7. P. 2217. doi: 10.1007/s00167-016-3984-6

[101]

McCormick F, Cole BJ, Nwachukwu B, et al. Treatment of focal cartilage defects with a juvenile allogeneic 3-dimensional articular cartilage graft. Oper Tech Sports Med. 2013;21(2):95–99. doi: 10.1053/j.otsm.2013.03.007

[102]

McCormick F., Cole B.J., Nwachukwu B., et al. Treatment of focal cartilage defects with a juvenile allogeneic 3-dimensional articular cartilage graft // Oper Tech Sports Med. 2013. Vol. 21, N 2. P. 95–99. doi: 10.1053/j.otsm.2013.03.007

[103]

Yu L, Lin YL, Yan M, et al. Hyaline cartilage differentiation of fibroblasts in regeneration and regenerative medicine. Development. 2022;149(2):dev200249. doi: 10.1242/dev.200249

[104]

Yu L., Lin Y., Yan M., et al. Hyaline cartilage differentiation of fibroblasts in regeneration and regenerative medicine // Development. 2022. Vol. 149, N 2. P. dev200249. doi: 10.1242/dev.200249

[105]

Hiramatsu K, Sasagawa S, Outani H, et al. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Invest. 2011;121(2):640–657. doi: 10.1172/JCI44605

[106]

Hiramatsu K., Sasagawa S., Outani H., et al. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors // J Clin Invest. 2011. Vol. 121, N 2. P. 640–657. doi: 10.1172/JCI44605

[107]

Sudo K, Kanno M, Miharada K, et al. Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells. 2007;25(7):1610–1617. Corrected and republished from: Stem Cells. 2014;32(7):1995–1996. doi: 10.1634/stemcells.2006-0504

[108]

Sudo K., Kanno M., Miharada K., et al. Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations // Stem Cells. 2007. Vol. 25, N 7. P. 1610–1617. doi: 10.1634/stemcells.2006-0504 Corrected and republished from: Stem Cells. 2014. Vol. 32, N 7. P. 1995–1996. doi: 10.1634/stemcells.2006-0504

[109]

Ikeda T, Kamekura S, Mabuchi A, et al. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum. 2004;50(11):3561–3573. doi: 10.1002/art.20611

[110]

Ikeda T., Kamekura S., Mabuchi A., et al. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage // Arthritis Rheum. 2004. Vol. 50, N 11. P. 3561–3573. doi: 10.1002/art.20611

[111]

Xu H, Li P, Liu M, et al. CCN2 and CCN5 exerts opposing effect on fibroblast proliferation and transdifferentiation induced by TGF-β. Clin Exp Pharmacol Physiol. 2015;42(11):1207–1219. doi: 10.1111/1440-1681.12470

[112]

Xu H., Li P., Liu M., et al. CCN2 and CCN5 exerts opposing effect on fibroblast proliferation and transdifferentiation induced by TGF-β // Clin Exp Pharmacol Physiol. 2015. Vol. 42, N 11. P. 1207–1219. doi: 10.1111/1440-1681.12470

[113]

French MM, Rose S, Canseco J, Athanasiou KA. Chondrogenic differentiation of adult dermal fibroblasts. Ann Biomed Eng. 2004;32(1):50–56. doi: 10.1023/b:abme.0000007790.65773.e0

[114]

French M.M., Rose S., Canseco J., Athanasiou K.A. Chondrogenic differentiation of adult dermal fibroblasts // Ann Biomed Eng. 2004. Vol. 32, N 1. P. 50–56. doi: 10.1023/b:abme.0000007790.65773.e0

[115]

Liu FL, Lin LH, Sytwu HK, Chang DM. GDF-5 is suppressed by IL-1β and enhances TGF-β3-mediated chondrogenic differentiation in human rheumatoid fibroblast-like synoviocytes. Exp Mol Pathol. 2010;88(1):163–170. doi: 10.1016/j.yexmp.2009.09.019

[116]

Liu F.L., Lin L.H., Sytwu H.K., Chang D.M., et al. GDF-5 is suppressed by IL-1β and enhances TGF-β3-mediated chondrogenic differentiation in human rheumatoid fibroblast-like synoviocytes // Exp Mol Pathol. 2010. Vol. 88, N 1. P. 163–170. doi: 10.1016/j.yexmp.2009.09.019

[117]

Zhang X, Weng M, Chen Z. Fibroblast growth factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation. PLoS One. 2021;16(2):e0241281. doi: 10.1371/journal.pone.0241281

[118]

Zhang X., Weng M., Chen Z. Fibroblast growth factor 9 (FGF9) negatively regulates the early stage of chondrogenic differentiation // PLoS One. 2021. Vol. 16, N 2. P. e0241281. doi: 10.1371/journal.pone.0241281

[119]

Sugiura N, Agata K. FGF-stimulated tendon cells embrace a chondrogenic fate with BMP7 in newt tissue culture. Dev Growth Differ. 2024;66(3):182–193. doi: 10.1111/dgd.12913

[120]

Sugiura N., Agata K. FGF-stimulated tendon cells embrace a chondrogenic fate with BMP7 in newt tissue culture // Dev Growth Differ. 2024. Vol. 66, N 3. P. 182–193. doi: 10.1111/dgd.12913

[121]

Outani H, Okada M, Yamashita A, et al. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors. PLoS One. 2013;8(10):e77365. doi: 10.1371/journal.pone.0077365

[122]

Outani H., Okada M., Yamashita A., et al. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors // PLoS One. 2013. Vol. 8, N 10. P. e77365. doi: 10.1371/journal.pone.0077365

[123]

Zhang Y, Liu Y, Yan W, et al. Human induced pluripotent stem cell line from fibroblasts (HEBHMUi015-A) and chondrogenic differentiation. Stem Cell Res. 2023;72:103201. doi: 10.1016/j.scr.2023.103201

[124]

Zhang Y., Liu Y., Yan W., et al. Human induced pluripotent stem cell line from fibroblasts (HEBHMUi015-A) and chondrogenic differentiation // Stem Cell Res. 2023. Vol. 72. P. 103201. doi: 10.1016/j.scr.2023.103201

[125]

Lee GS, Kim MG, Kwon HJ. Electrical stimulation induces direct reprogramming of human dermal fibroblasts into hyaline chondrogenic cells. Biochem Biophys Res Commun. 2019;513(4):990–996. doi: 10.1016/j.bbrc.2019.04.027

[126]

Lee G.S., Kim M.G., Kwon H.J. Electrical stimulation induces direct reprogramming of human dermal fibroblasts into hyaline chondrogenic cells // Biochem Biophys Res Commun. 2019. Vol. 513, N 4. P. 990–996. doi: 10.1016/j.bbrc.2019.04.027

[127]

Aloise AC, Pereira MD, Duailibi SE, et al. TGF-β1 on induced osteogenic differentiation of human dermal fibroblast. Acta Cir Bras. 2014;29 Suppl. 1:1–6. doi: 10.1590/s0102-86502014001300001

[128]

Aloise A.C., Pereira M.D., Duailibi S.E., et al. TGF-β1 on induced osteogenic differentiation of human dermal fibroblast // Acta Cir Bras. 2014. Vol. 29, Suppl. 1. P. 1–6. doi: 10.1590/s0102-86502014001300001

[129]

Myllylä RM, Haapasaari KM, Lehenkari P, Tuukkanen J. Bone morphogenetic proteins 4 and 2/7 induce osteogenic differentiation of mouse skin derived fibroblast and dermal papilla cells. Cell Tissue Res. 2014;355(2):463–470. doi: 10.1007/s00441-013-1745-0

[130]

Myllylä R.M., Haapasaari K.M., Lehenkari P., Tuukkanen J. Bone morphogenetic proteins 4 and 2/7 induce osteogenic differentiation of mouse skin derived fibroblast and dermal papilla cells // Cell Tissue Res. 2014. Vol. 355, N 2. P. 463–470. doi: 10.1007/s00441-013-1745-0

[131]

Zhang L, Luan L, Ma Y. Dishevelled-2 modulates osteogenic differentiation of human synovial fibroblasts in osteoarthritis. Mol Med Rep. 2018;18(1):292–298. doi: 10.3892/mmr.2018.8975

[132]

Zhang L., Luan L., Ma Y. Dishevelled-2 modulates osteogenic differentiation of human synovial fibroblasts in osteoarthritis // Mol Med Rep. 2018. Vol. 18, N 1. P. 292–298. doi: 10.3892/mmr.2018.8975

[133]

Zhu Z, Cui Y, Huang F, et al. Long non-coding RNA H19 promotes osteogenic differentiation of renal interstitial fibroblasts through Wnt-β-catenin pathway. Mol Cell Biochem. 2020;472(1-2):259–261. doi: 10.1007/s11010-020-03823-6

[134]

Zhu Z., Cui Y., Huang F., et al. Long non-coding RNA H19 promotes osteogenic differentiation of renal interstitial fibroblasts through Wnt-β-catenin pathway // Mol Cell Biochem. 2020. Vol. 470, N 1-2. P. 145–155. doi: 10.1007/s11010-020-03823-6 Corrected and republished from: Mol Cell Biochem. 2020. Vol. 472, N 1-2. P. 259–261. doi: 10.1007/s11010-020-03753-3

[135]

Iwamoto N, Fukui S, Takatani A, et al. Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway. Arthritis Res Ther. 2018;20(1):189. doi: 10.1186/s13075-018-1703-z

[136]

Iwamoto N., Fukui S., Takatani A., et al. Osteogenic differentiation of fibroblast-like synovial cells in rheumatoid arthritis is induced by microRNA-218 through a ROBO/Slit pathway // Arthritis Res Ther. 2018. Vol. 20, N 1. P. 189. doi: 10.1186/s13075-018-1703-z

[137]

Wang Y, Niu H, Liu Y, et al. Promoting effect of long non-coding RNA SNHG1 on osteogenic differentiation of fibroblastic cells from the posterior longitudinal ligament by the microRNA-320b/IFNGR1 network. Cell Cycle. 2020;19(21):2836–2850. doi: 10.1080/15384101.2020.1827188

[138]

Wang Y., Niu H., Liu Y., et al. Promoting effect of long non-coding RNA SNHG1 on osteogenic differentiation of fibroblastic cells from the posterior longitudinal ligament by the microRNA-320b/IFNGR1 network // Cell Cycle. 2020. Vol. 19, N 21. P. 2836–2850. doi: 10.1080/15384101.2020.1827188

[139]

Seubbuk S, Sritanaudomchai H, Kasetsuwan J, Surarit R. High glucose promotes the osteogenic differentiation capability of human periodontal ligament fbroblasts. Mol Med Rep. 2017;15(5):2788–2794. doi: 10.3892/mmr.2017.6333

[140]

Seubbuk S., Sritanaudomchai H., Kasetsuwan J., Surarit R. High glucose promotes the osteogenic differentiation capability of human periodontal ligament fibroblasts // Mol Med Rep. 2017. Vol. 15, N 5. P. 2788–2794. doi: 10.3892/mmr.2017.6333

[141]

Zeng Y, Wang T, Liu Y, et al. Wnt and Smad signaling pathways synergistically regulated the osteogenic differentiation of fibroblasts in ankylosing spondylitis. Tissue Cell. 2022;77:101852. doi: 10.1016/j.tice.2022.101852

[142]

Zeng Y., Wang T., Liu Y., et al. Wnt and Smad signaling pathways synergistically regulated the osteogenic differentiation of fibroblasts in ankylosing spondylitis // Tissue Cell. 2022. Vol. 77. P. 101852. doi: 10.1016/j.tice.2022.101852

[143]

Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: A review of nonviral methods and applications. J Biol Eng. 2019;13:7. doi: 10.1186/s13036-019-0140-0

[144]

Hamann A., Nguyen A., Pannier A.K. Nucleic acid delivery to mesenchymal stem cells: A review of nonviral methods and applications // J Biol Eng. 2019. Vol. 13. P. 7. doi: 10.1186/s13036-019-0140-0

[145]

Vieira HLA, Alves PM, Vercelli A. Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog Neurobiol. 2011;93(3):444–455. doi: 10.1016/j.pneurobio.2011.01.007

[146]

Vieira H.L.A., Alves P.M., Vercelli A. Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species // Prog Neurobiol. 2011. Vol. 93, N 3. P. 444–455. doi: 10.1016/j.pneurobio.2011.01.007

[147]

Skuse GR, Lamkin-Kennard KA. Reverse engineering life: Physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes. Methods Mol Biol. 2013;1001:99–114. doi: 10.1007/978-1-62703-363-3_9

[148]

Skuse G.R., Lamkin-Kennard K.A. Reverse engineering life: Physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes // Methods Mol Biol. 2013. Vol. 1001. P. 99–114. doi: 10.1007/978-1-62703-363-3_9

[149]

Kim YG, Choi J, Kim K. Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J. 2020;15(12):e2000082. doi: 10.1002/biot.202000082

[150]

Kim Y.G., Choi J., Kim K. Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis // Biotechnol J. 2020. Vol. 15, N 12. P. e2000082. doi: 10.1002/biot.202000082

[151]

Steinert AF, Nöth U, Tuan RS. Concepts in gene therapy for cartilage repair. Injury. 2008;39 Suppl. 1(Suppl. 1):S97–S113. doi: 10.1016/j.injury.2008.01.034

[152]

Steinert A.F., Nöth U., Tuan R.S. Concepts in gene therapy for cartilage repair // Injury. 2008. Vol. 39, Suppl. 1. P. S97–S113. doi: 10.1016/j.injury.2008.01.034

[153]

Trippel SB, Ghivizzani SC, Nixon AJ. Gene-based approaches for the repair of articular cartilage. Gene Ther. 2004;11(4):351–359. doi: 10.1038/sj.gt.3302201

[154]

Trippel S.B., Ghivizzani S.C., Nixon A.J. Gene-based approaches for the repair of articular cartilage // Gene Ther. 2004. Vol. 11, N 4. P. 351–359. doi: 10.1038/sj.gt.3302201

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (635KB)

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/