TRIM29 protein partners in cultured immortalized normal basal epithelial cells of the prostate
Rinat I. Sultanov , Alina S. Mulyukina , Victoria O. Shender , Maria M. Lukina , Maria A. Lagarkova , Georgij P. Arapidi
Genes & Cells ›› 2024, Vol. 19 ›› Issue (4) : 496 -512.
TRIM29 protein partners in cultured immortalized normal basal epithelial cells of the prostate
BACKGROUND: The E3 ubiquitin ligase TRIM29 is involved in basal epithelial development, cellular response to viral infection, and DNA damage. Furthermore, this protein can have both oncogenic and tumor suppressor properties. However, the molecular mechanisms of TRIM29 involvement in such a wide range of biological processes remain unclear.
AIM: To identify protein partners of TRIM29 and its truncated forms and to determine the key molecular processes in which it is involved.
MATERIALS AND METHODS: Cell cultures of normal prostate basal epithelium with overexpression of a full length TRIM29-FLAG chimeric protein or its truncated forms without the B-box or Coiled-Coil domain were obtained. Subsequently, protein partners of TRIM29 and truncated forms of TRIM29 were identified by protein immunoprecipitation followed by proteomic analysis (high-performance liquid chromatography with tandem mass spectrometry). Results were confirmed by Western blot and immunocytochemistry.
RESULTS: TRIM29 binds to 288 proteins in the normal basal epithelium of the prostate. Deletion of the B-box has little effect on TRIM29 protein-protein interactions, whereas deletion of the Coiled-Coil domain deprives TRIM29 of most of its protein partners and impairs its dimerization. TRIM29 was found to localize to both the nucleus and cytoplasm, while deletion of functional domains does not prevent localization to different compartments, but does affect binding to proteins specific to these compartments. TRIM29 binds to cytoskeleton proteins, cellular stress response proteins, and RNA-binding proteins. In addition, TRIM29 is shown to increase cell resistance to genotoxic agents and to affect RNA splicing.
CONCLUSION: Proteomic analysis showed that in normal prostate basal epithelium, E3 ubiquitin ligase TRIM29 binds to a relatively large number of proteins that perform different functions in different cell compartments. Our results are consistent with results obtained by other research teams who showed that TRIM29 is actively involved in cytoskeletal remodeling, cellular response to viral infection, and DNA damage. In addition, it was shown for the first time that TRIM29 interacts with stress granule proteins and RNA binding proteins and is able to regulate RNA splicing, and the Coiled-Coil domain of TRIM29 may play a key role in this process.
prostate cancer / PCa / TRIM29 / basal epithelium / interactome / E3 ubiquitin ligase / RNA binding proteins
| [1] |
Sultanov R, Mulyukina A, Zubkova O, et al. TP63-TRIM29 axis regulates enhancer methylation and chromosomal instability in prostate cancer. . doi: |
| [2] |
Sultanov R., Mulyukina A., Zubkova O., et al. TP63-TRIM29 axis regulates enhancer methylation and chromosomal instability in prostate cancer // Epigenetics Chromatin. 2024. Vol. 17, N. 1. P. 6. doi: 10.1186/s13072-024-00529-7 |
| [3] |
Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. . 2015;1853(10 Pt A):2296–2305. doi: |
| [4] |
Masuda Y., Takahashi H., Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells // Biochim Biophys Acta. 2015. Vol. 1853(10 Pt A). P. 2296–2305. doi: 10.1016/j.bbamcr.2015.05.035 |
| [5] |
Palmbos PL, Wang Y, Bankhead Iii A, et al. ATDC mediates a TP63-regulated basal cancer invasive program. doi: |
| [6] |
Palmbos P.L., Wang Y., Bankhead Iii A., et al. ATDC mediates a TP63-regulated basal cancer invasive program // Oncogene. 2019. Vol. 38, N. 18. P. 3340–3354. doi: 10.1038/s41388-018-0646-9 |
| [7] |
Han Q, Sun ML, Liu WS, et al. Upregulated expression of ACTL8 contributes to invasion and metastasis and indicates poor prognosis in colorectal cancer. . 2019;12:1749–1763. doi: |
| [8] |
Han Q., Sun M.L., Liu W.S., et al. Upregulated expression of ACTL8 contributes to invasion and metastasis and indicates poor prognosis in colorectal cancer // Onco Targets Ther. 2019. Vol. 12. P. 1749–1763. doi: 10.2147/OTT.S185858 |
| [9] |
Du H, Xu Q, Xiao S, et al. MicroRNA-424-5p acts as a potential biomarker and inhibits proliferation and invasion in hepatocellular carcinoma by targeting TRIM29. . 2019;224:1–11. doi: |
| [10] |
Du H., Xu Q., Xiao S., et al. MicroRNA-424-5p acts as a potential biomarker and inhibits proliferation and invasion in hepatocellular carcinoma by targeting TRIM29 // Life Sci. 2019. Vol. 224. P. 1–11. doi: 10.1016/j.lfs.2019.03.028 |
| [11] |
Qiu F, Xiong JP, Deng J, Xiang XJ. TRIM29 functions as an oncogene in gastric cancer and is regulated by miR-185. 2015;8(5):5053–5061. |
| [12] |
Qiu F., Xiong J.P., Deng J., Xiang X.J. TRIM29 functions as an oncogene in gastric cancer and is regulated by miR-185 // Int J Clin Exp Pathol. 2015. Vol. 8, N. 5. P. 5053–5061. |
| [13] |
Wang L, Yang H, Abel EV, et al. ATDC induces an invasive switch in KRAS-induced pancreatic tumorigenesis. . 2015;29(2):171–183. doi: |
| [14] |
Wang L., Yang H., Abel E.V., et al. ATDC induces an invasive switch in KRAS-induced pancreatic tumorigenesis // Genes Dev. 2015. Vol. 29, N. 2. P. 171–183. doi: 10.1101/gad.253591.114 |
| [15] |
Tang ZP, Dong QZ, Cui QZ, et al. Ataxia-telangiectasia group D complementing gene (ATDC) promotes lung cancer cell proliferation by activating NF-κB pathway. . 2013;8(6):e63676. doi: |
| [16] |
Tang Z.P., Dong Q.Z., Cui Q.Z., et al. Ataxia-telangiectasia group D complementing gene (ATDC) promotes lung cancer cell proliferation by activating NF-κB pathway // PLoS One. 2013. Vol. 8, N. 6. P. e63676. doi: 10.1371/journal.pone.0063676 |
| [17] |
Masuda Y, Takahashi H, Sato S, et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin. doi: |
| [18] |
Masuda Y., Takahashi H., Sato S., et al. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin // Nat Commun. 2015. Vol. 6. P. 7299. doi: 10.1038/ncomms8299 |
| [19] |
Yanagi T, Watanabe M, Hata H, et al. Loss of TRIM29 Alters keratin distribution to promote cell invasion in squamous cell carcinoma. |
| [20] |
Yanagi T., Watanabe M., Hata H., et al. Loss of TRIM29 Alters keratin distribution to promote cell invasion in squamous cell carcinoma // Cancer Res. 2018. Vol. 78, N. 24. P. 6795–6806. doi: 10.1158/0008-5472.CAN-18-1495 |
| [21] |
Xing J, Weng L, Yuan B, et al. Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nat Immunol. 2016;17(12):1373–1380. doi: 10.1038/ni1216-1479a Corrected and republished from: Nat Immunol. 2016;17(12):1479. doi: 10.1038/ni.3580 |
| [22] |
Xing J., Weng L., Yuan B., et al. Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract // Nat Immunol. 2016. Vol. 17, N. 12. P. 1373–1380. doi: 10.1038/ni1216-1479a Corrected and republished from: Nat Immunol. 2016. Vol. 17, N. 12. P. 1479. doi: 10.1038/ni.3580 |
| [23] |
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. |
| [24] |
Wu T., Hu E., Xu S., et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data // Innovation (Camb). 2021. Vol. 2, N. 3. P. 100141. doi: 10.1016/j.xinn.2021.100141 |
| [25] |
Watson J, Smith M, Francavilla C, Schwartz JM. SubcellulaRVis: a web-based tool to simplify and visualise subcellular compartment enrichment. |
| [26] |
Watson J., Smith M., Francavilla C., Schwartz J.M. SubcellulaRVis: a web-based tool to simplify and visualise subcellular compartment enrichment // Nucleic Acids Res. 2022. Vol. 50(W1). P. W718–W725. doi: 10.1093/nar/gkac336 |
| [27] |
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. . 2013;29(1):15–21. doi: |
| [28] |
Dobin A., Davis C.A., Schlesinger F., et al. STAR: ultrafast universal RNA-seq aligner // Bioinformatics. 2013. Vol. 29, N. 1. P. 15–21. doi: 10.1093/bioinformatics/bts635 |
| [29] |
Shen S, Park JW, Lu ZX, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. |
| [30] |
Shen S., Park J.W., Lu Z.X., et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data // Proc Natl Acad Sci U S A. 2014. Vol. 111, N. 51. P. E5593–E5601. doi: 10.1073/pnas.1419161111 |
| [31] |
Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of “single protein RING finger” E3 ubiquitin ligases. Bioessays. 2005;27(11):1147–1157. doi: 10.1002/bies.20304 |
| [32] |
Meroni G., Diez-Roux G. TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases // Bioessays. 2005. Vol. 27, N. 11. P. 1147–1157. doi: 10.1002/bies.20304 |
| [33] |
Sardiello M, Cairo S, Fontanella B, et al. Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. Biol. 2008;8:225. doi: |
| [34] |
Sardiello M., Cairo S., Fontanella B., et al. Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties // BMC Evol Biol. 2008. Vol. 8. P. 225. doi: 10.1186/1471-2148-8-225 |
| [35] |
Cardamone MD, Krones A, Tanasa B, et al. A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2. . 2012;46(1):91–104. doi: |
| [36] |
Cardamone M.D., Krones A., Tanasa B., et al. A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2 // Mol Cell. 2012. Vol. 46, N. 1. P. 91–104. doi: 10.1016/j.molcel.2012.01.025 |
| [37] |
Yuan J, Luo K, Zhang L, et al. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 2010;140(3):384–396. doi: 10.1016/j.cell.2009.12.032 |
| [38] |
Yuan J., Luo K., Zhang L., et al. USP10 regulates p53 localization and stability by deubiquitinating p53 // Cell. 2010. Vol. 140, N. 3. P. 384–396. doi: 10.1016/j.cell.2009.12.032 |
| [39] |
Wikiniyadhanee R, Lerksuthirat T, Stitchantrakul W, et al. TRIM29 is required for efficient recruitment of 53BP1 in response to DNA double-strand breaks in vertebrate cells. FEBS Open Bio. 2020;10(10):2055–2071. doi: 10.1002/2211-5463.12954 |
| [40] |
Wikiniyadhanee R., Lerksuthirat T., Stitchantrakul W., et al. TRIM29 is required for efficient recruitment of 53BP1 in response to DNA double-strand breaks in vertebrate cells // FEBS Open Bio. 2020. Vol. 10, N. 10. P. 2055–2071. doi: 10.1002/2211-5463.12954 |
| [41] |
Tan G, Xu F, Song H, et al. Identification of TRIM14 as a type I IFN-stimulated gene controlling hepatitis B virus replication by targeting HBx. |
| [42] |
Tan G, Xu F, Song H, et al. Identification of TRIM14 as a type I IFN-stimulated gene controlling hepatitis B virus replication by targeting HBx // Front Immunol. 2018. Vol. 9. P. 1872. doi: 10.3389/fimmu.2018.01872 |
| [43] |
Hoffpauir CT, Bell SL, West KO, et al. TRIM14 Is a key regulator of the type I IFN response during mycobacterium tuberculosis infection. |
| [44] |
Hoffpauir C.T., Bell S.L., West K.O., et al. TRIM14 Is a key regulator of the type I IFN response during mycobacterium tuberculosis infection // J Immunol. 2020. Vol. 205, N. 1. P. 153–167. doi: 10.4049/jimmunol.1901511 |
| [45] |
Liu B, Liao J, Rao X, et al. Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A. 1998;95(18):10626–10631. doi: 10.1073/pnas.95.18.10626 |
| [46] |
Liu B., Liao J., Rao X., et al. Inhibition of Stat1-mediated gene activation by PIAS1 // Proc Natl Acad Sci U S A. 1998. Vol. 95, N. 18. P. 10626–10631. doi: 10.1073/pnas.95.18.10626 |
| [47] |
DeVries TA, Kalkofen RL, Matassa AA, Reyland ME. Protein kinase Cdelta regulates apoptosis via activation of STAT1. J Biol Chem. 2004;279(44):45603–45612. doi: 10.1074/jbc.M407448200 |
| [48] |
DeVries T.A., Kalkofen R.L., Matassa A.A., Reyland M.E. Protein kinase Cdelta regulates apoptosis via activation of STAT1 // J Biol Chem. 2004. Vol. 279, N. 44. P. 45603–45612. doi: 10.1074/jbc.M407448200 |
| [49] |
Alphonse N, Wanford JJ, Voak AA, et al. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. |
| [50] |
Alphonse N., Wanford J.J., Voak A.A., et al. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling // Cell. 2022. Vol. 185, N. 13. P. 2354–2369. doi: 10.1016/j.cell.2022.04.028 |
| [51] |
Hu S, Zhang Y, Yi Q, et al. Time-resolved proteomic profiling reveals compositional and functional transitions across the stress granule life cycle. |
| [52] |
Hu S., Zhang Y., Yi Q., et al. Time-resolved proteomic profiling reveals compositional and functional transitions across the stress granule life cycle // Nat Commun. 2023. Vol. 14, N. 1. P. 7782. doi: 10.1038/s41467-023-43470-1 |
| [53] |
Thorslund T, Ripplinger A, Hoffmann S, et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. |
| [54] |
Thorslund T., Ripplinger A., Hoffmann S., et al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage // Nature. 2015. Vol. 527, N. 7578. P. 389–393. doi: 10.1038/nature15401 |
| [55] |
Choudhury NR, Heikel G, Trubitsyna M, et al. RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination. |
| [56] |
Choudhury N.R., Heikel G., Trubitsyna M., et al. RNA-binding activity of TRIM25 is mediated by its PRY/SPRY domain and is required for ubiquitination // BMC Biol. 2017. Vol. 15, N. 1. P. 105. doi: 10.1186/s12915-017-0444-9 |
| [57] |
Hwang JY, Jung S, Kook TL, et al. rMAPS2: an update of the RNA map analysis and plotting server for alternative splicing regulation. |
| [58] |
Hwang J.Y., Jung S., Kook T.L., et al. rMAPS2: an update of the RNA map analysis and plotting server for alternative splicing regulation // Nucleic Acids Res. 2020. Vol. 48(W1). P. W300–W306. doi: 10.1093/nar/gkaa237 |
| [59] |
Yang H, Palmbos PL, Wang L, et al. ATDC (Ataxia Telangiectasia Group D Complementing) promotes radioresistance through an Interaction with the RNF8 ubiquitin ligase. |
| [60] |
Yang H., Palmbos P.L., Wang L., et al. ATDC (Ataxia Telangiectasia Group D Complementing) promotes radioresistance through an interaction with the RNF8 ubiquitin ligase // J Biol Chem. 2015. Vol. 290, N. 45. P. 27146–27157. doi: 10.1074/jbc.M115.665489 |
| [61] |
Wang L, Yang H, Palmbos PL, et al. ATDC/TRIM29 phosphorylation by ATM/MAPKAP kinase 2 mediates radioresistance in pancreatic cancer cells. |
| [62] |
Wang L., Yang H., Palmbos P.L., et al. ATDC/TRIM29 phosphorylation by ATM/MAPKAP kinase 2 mediates radioresistance in pancreatic cancer cells // Cancer Res. 2014. Vol. 74, N. 6. P. 1778–1788. doi: 10.1158/0008-5472.CAN-13-2289 |
| [63] |
Yuan Z, Villagra A, Peng L, et al. The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions. |
| [64] |
Yuan Z., Villagra A., Peng L., et al. The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions // Mol Cell Biol. 2010. Vol. 30, N. 12. P. 3004–3015. doi: 10.1128/MCB.01023-09 |
| [65] |
Xing J, Zhang A, Minze LJ, et al. TRIM29 negatively regulates the type I IFN production in response to RNA virus. |
| [66] |
Xing J., Zhang A., Minze L.J., et al. TRIM29 negatively regulates the type I IFN production in response to RNA virus // J Immunol. 2018. Vol. 201, N. 1. P. 183–192. doi: 10.4049/jimmunol.1701569 |
| [67] |
Han X, Du H, Massiah MA. Detection and characterization of the in vitro e3 ligase activity of the human MID1 protein. |
| [68] |
Han X., Du H., Massiah M.A. Detection and characterization of the in vitro e3 ligase activity of the human MID1 protein // J Mol Biol. 2011. Vol. 407, N. 4. P. 505–520. doi: 10.1016/j.jmb.2011.01.048 |
| [69] |
Li Q, Lin L, Tong Y, et al. TRIM29 negatively controls antiviral immune response through targeting STING for degradation. |
| [70] |
Li Q., Lin L., Tong Y., et al. TRIM29 negatively controls antiviral immune response through targeting STING for degradation // Cell Discov. 2018. Vol. 4. P. 25. doi: 10.1038/s41421-018-0031-4 Corrected and republished from: Cell Discov. 2018. Vol. 4. P. 13. doi: 10.1038/s41421-018-0010-9 |
Eco-Vector
/
| 〈 |
|
〉 |