Comparison the impact of mesenchymal stromal cells, their microvesicles and plasma enriched with soluble platelet factors on survival and apoptosis of rat spleen lymphocytes in vitro
Oksana V. Klimenkova , Michael P. Potapnev , Natalia V. Goncharova , Oleg A. Kudelich , Gennady G. Kondratenko
Genes & Cells ›› 2024, Vol. 19 ›› Issue (3) : 387 -399.
Comparison the impact of mesenchymal stromal cells, their microvesicles and plasma enriched with soluble platelet factors on survival and apoptosis of rat spleen lymphocytes in vitro
BACKGROUND: The trophic function is one of the important but insufficiently studied features of mesenchymal stromal cells (MSCs), their microvesicles (MVs), and plasma enriched with soluble platelet factors (PRPs), which ensure the viability of target cells.
AIM: To analyze the capability of MSCs, MVs, and PRP to affect the viability and spontaneous and activation-induced apoptosis of rat spleen lymphocytes during culturing in vitro.
MATERIALS AND METHODS: MSCs were isolated from the mononuclear cell fraction of the femoral bone marrow of Wistar rats using the plastic adhesion method. MVs were obtained from the conditioned medium of MSCs by centrifugation at 14,500 g. PRP was prepared by freezing/thawing rat peripheral blood platelet concentrate. Rat spleen lymphocytes were isolated on a density gradient of 1.077 g/cm3. The viability and degree of lymphocyte apoptosis in vitro were assessed by flow cytometry for 7-AAD incorporation and binding to annexin V.
RESULTS: The presence of MSCs at 10 and 20% concentrations caused an increase in the number of living intact and PMA-activated lymphocytes by the end of 3-day in vitro cultivation. Compared with controls, the amount of necrotic cells decreased 8.3–13.5 times, and the number of apoptotic cells decreased 2.3–4.0 times, mainly due to lymphocytes at the late stage of apoptosis. MVs of MSCs at the indicated concentrations did not significantly affect the viability of lymphocytes cultured in vitro but reduced the level of apoptosis of intact and PMA-activated lymphocytes by 3.6 (р=0.03) and 4.8–5.2 (р=0.048; р=0.03) times respectively. Studies have shown that 1.25% rat PRP has a growth-stimulatory activity against MSCs but not against lymphocytes cultured in vitro. In the culture of intact lymphocytes, PRPs did not significantly affect cell viability with a slight decrease (2.7–2.9 fold, p >0.05) in the number of necrotic cells. In the culture of PMA-activated lymphocytes, 1.25–2.50% PRP increased the number of living cells by 1.6–2.2 times (р=0.002; р=0.01) and the number of necrotic cells by two times (р=0.02).
CONCLUSION: MSCs, MVs of MSCs, and PRP, in decreasing order, enhanced the viability of rat spleen lymphocytes and suppressed late apoptosis during in vitro cultivation. Lymphocytes activated by phorbol myristate acetate are more sensitive to their vital action compared with resting cells.
mesenchymal stromal cells / microvesicles / plasma enriched with soluble platelet factors / lymphocytes of rat spleen / viability / apoptosis
| [1] |
Samadi P, Saki S, Manoochehri H, Sheykhhasan M. Therapeutic applications of mesenchymal stem cells: a comprehensive review. Curr Stem Cell Res Ther. 2021;16(3):323–353. doi: 10.2174/1574888X15666200914142709 |
| [2] |
Samadi P., Saki S., Manoochehri H., Sheykhhasan M. Therapeutic applications of mesenchymal stem cells: a comprehensive review // Curr Stem Cell Res Ther. 2021. Vol. 16, N 3. P. 323–353. doi: 10.2174/1574888X15666200914142709 |
| [3] |
Gowen A, Shahjin F, Chand S, et al. Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications. Front Cell Dev Biol. 2020;8:149. doi: 10.3389/fcell.2020.00149 |
| [4] |
Gowen A., Shahjin F., Chand S., et al. Mesenchymal stem cell-derived extracellular vesicles: challenges in clinical applications // Front Cell Dev Biol. 2020. Vol. 8. P. 149. doi: 10.3389/fcell.2020.00149 |
| [5] |
Giusti I, D’Ascenzo S, Macchiarelli G, et al. In vitro evidence supporting applications of platelet derivatives in regenerative medicine. Blood Transfus. 2020;18(2):117–129. doi: 10.2450/2019.0164-19 |
| [6] |
Giusti I., D’Ascenzo S., Macchiarelli G., Dolo V. In vitro evidence supporting applications of platelet derivatives in regenerative medicine // Blood Transfus. 2020. Vol. 18, N 2. Р. 117–129. doi: 10.2450/2019.0164-19 |
| [7] |
Fan XL, Zhang Y, Li X, Fu QL. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell Mol Life Sci. 2020;77(14):2771–2794. doi: 10.1007/s00018-020-03454-6 |
| [8] |
Fan X.L., Zhang Y., Li X., Fu Q.L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy // Cell Mol Life Sci. 2020. Vol. 77, N 14. Р. 2771–2794. doi: 10.1007/s00018-020-03454-6 |
| [9] |
Sarre C, Contreras-Lopez R, Nernpermpisooth N, et al. PPARβ/δ priming enhances the anti-apoptotic and therapeutic properties of mesenchymal stromal cells in myocardial ischemia-reperfusion injury. Stem Cell Res Ther. 2022;13(1):167. doi: 10.1186/s13287-022-02840-0 Corrected and republished from: Stem Cell Res Ther. 2022;13(1):338. doi: 10.1186/s13287-022-03086-6 |
| [10] |
Sarre C., Contreras-Lopez R., Nernpermpisooth N., et al. PPARβ/δ priming enhances the anti-apoptotic and therapeutic properties of mesenchymal stromal cells in myocardial ischemia-reperfusion injury // Stem Cell Res Ther. 2022. Vol. 13, N 1. P. 167. doi: 10.1186/s13287-022-02840-0 Corrected and republished from: Stem Cell Res Ther. 2022. Vol. 13. P. 338. doi: 10.1186/s13287-022-03086-6 |
| [11] |
Jiao Y, Zhang Q, Zhang J, et al. Platelet-rich plasma ameliorates lipopolysaccharide-induced cardiac injury by inflammation and ferroptosis regulation. Front Pharmacol. 2022;13:1026641. doi: 10.3389/fphar.2022.1026641 |
| [12] |
Jiao Y., Zhang Q., Zhang J., et al. Platelet-rich plasma ameliorates lipopolysaccharide-induced cardiac injury by inflammation and ferroptosis regulation // Front Pharmacol. 2022. Vol. 13. P. 1026641. doi: 10.3389/fphar.2022.1026641 |
| [13] |
Armstrong BBS, Pedroso JCM, Conceição Carvalho JD Jr, Ferreira LM. Mesenchymal stem cells in lung diseases and their potential use in COVID-19 ARDS: A systematized review. Clinics (Sao Paulo). 2023;78:100237. doi: 10.1016/j.clinsp.2023.100237 |
| [14] |
Armstrong B.B.S., Montano Pedroso J.C., Carvalho J.C., Masako Ferreira L. Mesenchymal stem cells in lung diseases and their potential use in COVID-19 ARDS: A systematized review // Clinics (Sao Paulo). 2023. Vol. 78. P. 100237. doi: 10.1016/j.clinsp.2023.100237 |
| [15] |
Kadono M, Nakashima A, Ishiuchi N, et al. Adipose-derived mesenchymal stem cells cultured in serum-free medium attenuate acute contrast-induced nephropathy by exerting anti-apoptotic effects. Stem Cell Res Ther. 2023;14(1):337. doi: 10.1186/s13287-023-03553-8 |
| [16] |
Kadono M., Nakashima A., Ishiuchi N., et al. Adipose-derived mesenchymal stem cells cultured in serum-free medium attenuate acute contrast-induced nephropathy by exerting anti-apoptotic effects // Stem Cell Res Ther. 2023. Vol. 14, N 1. P. 337. doi: 10.1186/s13287-023-03553-8 |
| [17] |
Nemati M, Karbalaei N, Mokarram P, Dehghani F. Effects of platelet-rich plasma on the pancreatic islet survival and function, islet transplantation outcome and pancreatic pdx1 and insulin gene expression in streptozotocin-induced diabetic rats. Growth Factors. 2020;38(3-4):137–151. doi: 10.1080/08977194.2021.1881502 |
| [18] |
Nemati M., Karbalaei N., Mokarram P., Dehghani F. Effects of platelet-rich plasma on the pancreatic islet survival and function, islet transplantation outcome and pancreatic pdx1 and insulin gene expression in streptozotocin-induced diabetic rats // Growth Factors. 2020. Vol. 38, N 3-4. P. 137–151. doi: 10.1080/08977194.2021.1881502 |
| [19] |
Lopes-Pacheco M, Robba C, Rocco PRM, Pelosi P. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biol Toxicol. 2020;36(1):83–102. doi: 10.1007/s10565-019-09493-5 |
| [20] |
Lopes-Pacheco M., Robba C., Rocco P.R., Pelosi P. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome // Cell Biol Toxicol. 2020. Vol. 36, N 1. P. 83–102. doi: 10.1007/s10565-019-09493-5 |
| [21] |
Markova KL, Kozyreva AR, Gorshkova AA, et al. Methodological approaches to assessing the size and morphology of cell line microvesicles. Cell Technologies in Biology and Medicine. 2020;(2):129–138. EDN: EJWQSX doi: 10.1007/s10517-020-04934-2 |
| [22] |
Маркова К.Л., Козырева А.Р., Горшкова А.А., и др. Использование различных методических подходов для оценки размера и морфологии микровезикул клеточных линий // Клеточные технологии в биологии и медицине. 2020. № 2. С. 129–138. EDN: EJWQSX |
| [23] |
Yamaguchi R, Terashima Н, Yoneyama S, et al. Effects of platelet-rich plasma on intestinal anastomotic healing in rats: PRP concentration is a key factor. J Surg Res. 2012;173(2):258–266. doi: 10.1016/j.jss.2010.10.001 |
| [24] |
Yamaguchi R., Terashima Н., Yoneyama S., et al. Effects of platelet-rich plasma on intestinal anastomotic healing in rats: PRP concentration is a key factor // J Surg Res. 2012. Vol. 173, N 2. P. 258–266. doi: 10.1016/j.jss.2010.10.001 |
| [25] |
Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–1084. doi: 10.1002/jcb.20886 |
| [26] |
Caplan A.I., Dennis J.E. Mesenchymal stem cells as trophic mediators // J Cell Biochem. 2006. Vol. 98, N 5. P. 1076–1084. doi: 10.1002/jcb.20886 |
| [27] |
Fu Y, Karbaat L, Wu L, et al. Trophic effects of mesenchymal stem cells. Tissue Eng Part B Rev. 2017;23(6):515–528. doi: 10.1089/ten.TEB.2016.0365 |
| [28] |
Fu Y., Karbaat L., Wu L., et al. Trophic effects of mesenchymal stem cells // Tissue Eng Part B Rev. 2017. Vol. 23, N 6. P. 515–528. doi: 10.1089/ten.TEB.2016.0365 |
| [29] |
Samsonraj RM, Raughunath M, Nurcombe V, et al. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem cells Transl Med. 2017;6(12):2173–2185. doi: 10.1002/sctm.17-0129 |
| [30] |
Samsonraj R.M., Raughunath M., Nurcombe V., et al. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine // Stem Cells Transl Med. 2017. Vol. 6, N 12. P. 2173–2185. doi: 10.1002/sctm.17-0129 |
| [31] |
Zhuan X, Jiang Y, Yang X, et al. Advances of mesenchymal stem cells and their derived extracellular vesicles ass a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol. 2023;14:1244930. doi: 10.3389/fimmu.2023.1244930 |
| [32] |
Zhuan X., Jiang Y., Yang X., et al. Advances of mesenchymal stem cells and their derived extracellular vesicles ass a promising therapy for acute respiratory distress syndrome: from bench to clinic // Front Immunol. 2023. Vol. 14. P. 1244930. doi: 10.3389/fimmu.2023.1244930 |
| [33] |
Wang L, ZhaoY, Shi S. Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration. J Dent Res. 2012;91(11):1003–1010. doi: 10.1177/0022034512460404 |
| [34] |
Wang L., ZhaoY., Shi S. Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration // J Dent Res. 2012. Vol. 91, N 11. P. 1003–1010. doi: 10.1177/0022034512460404 |
| [35] |
Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther (Seoul). 2019;27(1):25–33. doi: 10.4062/biomolther.2017.260 |
| [36] |
Ayala-Cuellar A.P., Kang J.H., Jeung E.B., Choi K.C. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation // Biomol Ther (Seoul). 2019. Vol. 27, N 1. P. 25–33. doi: 10.4062/biomolther.2017.260 |
| [37] |
Potapnev MP. Apoptosis of cells of the immune system and its regulation by cytokines. Immunologiya. 2002;23(4):237–243. (In Russ.). |
| [38] |
Потапнев М.П. Апоптоз клеток иммунной системы и его регуляция цитокинами // Иммунология. 2002. T. 23, № 4. С. 237–243. |
| [39] |
Naji A, Favier B, Deschaseaux F, et al. Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Res Ther. 2019;10(1):56. doi: 10.1186/s13287-019-1158-4 |
| [40] |
Naji A., Favier B., Deschaseaux F., et al. Mesenchymal stem/stromal cell function in modulating cell death // Stem Cell Res Ther. 2019. Vol. 10, N 1. P. 56. doi: 10.1186/s13287-019-1158-4 |
| [41] |
Benvenuto F, Ferrari S, Gerdoni E, et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells. 2007;25:1753–1760. doi: 10.1634/stemcells.2007-0068 |
| [42] |
Benvenuto F., Ferrari S., Gerdoni E., et al. Human mesenchymal stem cells promote survival of T cells in a quiescent state // Stem Cells. 2007. Vol. 25, N 7. P. 1753–1760. doi: 10.1634/stemcells.2007-0068 |
| [43] |
Xu G, Zhang Y, Zhang L, et al. The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells. Biochem Biophys Res Commun. 2007;361(3):745–750. doi: 10.1016/j.bbrc.2007.07.052 |
| [44] |
Xu G., Zhang Y., Zhang L., et al. The role of IL-6 in inhibition of lymphocyte apoptosis by mesenchymal stem cells // Biochem Biophys Res Commun. 2007. Vol. 361, N 3. P. 745–750. doi: 10.1016/j.bbrc.2007.07.052 |
| [45] |
Bocelli-Tyndall C, Bracci L, Schaeren S, et al. Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitor proliferation of lymphocytes stimulated by interleukin 2, 7 and 15. Ann Rheum Dis. 2009;68(8):1352–1359. doi: 10.1136/ard.2008.094003 |
| [46] |
Bocelli-Tyndall C., Bracci L., Schaeren S., et al. Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitor proliferation of lymphocytes stimulated by interleukin 2, 7 and 15 // Ann Rheum Dis. 2009. Vol. 68, N 8. P. 1352–1359. doi: 10.1136/ard.2008.094003 |
| [47] |
Rubtsov Y, Goryunov K, Romanov A, et al. Molecular mechanisms of immunomodulation properties of mesenchymal stromal cells: a new insight into the role of ICAM-1. Stem Cells Int. 2017;2017:6516854. doi: 10.1155/2017/6516854 |
| [48] |
Rubtsov Y., Goryunov K., Romanov A., et al. Molecular mechanisms of immunomodulation properties of mesenchymal stromal cells: a new insight into the role of ICAM-1 // Stem Cells Int. 2017. Vol. 2017. P. 6516854. doi: 10.1155/2017/6516854 |
| [49] |
Chang YF, Cheng YH, Ko YC, et al. Anti-apoptotic and autophagic effect: Using conditioned medium from human bone marrow mesenchymal stem cells to treat human trabecular meshwork cells. Regen Ther. 2022;22:50–58. doi: 10.1016/j.reth.2022.12.002 |
| [50] |
Chang Y.F., Cheng Y.H., Ko Y.C., et al. Anti-apoptotic and autophagic effect: Using conditioned medium from human bone marrow mesenchymal stem cells to treat human trabecular meshwork cells // Regen Ther. 2022. Vol. 22. P. 50–58. doi: 10.1016/j.reth.2022.12.002 |
| [51] |
Del Fattore A, Luciano R, Pascucci L, et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 2015;24(12):2615–2627. doi: 10.3727/096368915X687543 |
| [52] |
Del Fattore A., Luciano R., Pascucci L., et al. Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes // Cell Transplant. 2015. Vol. 24, N 12. P. 2615–2627. doi: 10.3727/096368915X687543 |
| [53] |
Le Burel S, Thepenier C, Boutin L, et al. Effect of Mesenchymal stromal cells on T cells in a septic context: immunosuppression or immunostimulation? Stem Cells Dev. 2017;26(20):1477–1489. doi: 10.1089/scd.2016.0184 |
| [54] |
Le Burel S., Thepenier C., Boutin L., et al. Effect of Mesenchymal stromal cells on T cells in a septic context: immunosuppression or immunostimulation? // Stem Cells Dev. 2017. Vol. 26, N 20. P. 1477–1489. doi: 10.1089/scd.2016.0184 |
| [55] |
Pizzuti V, Balducelli E, Di Nunzio M, et al. Urine-derived renal epithelial cells isolated after kidney transplant are sensitive to neutrophil gelatinase-associated lipocalin exposure during in vitro culture. Eur J Cell Biol. 2024;103(3):151442. doi: 10.1016/j.ejcb.2024.151442 |
| [56] |
Pizzuti V., Balducelli E., Di Nunzio M., et al. Urine-derived renal epithelial cells isolated after kidney transplant are sensitive to neutrophil gelatinase-associated lipocalin exposure during in vitro culture // Eur J Cell Biol. 2024. Vol. 103, N 3. P. 151442. doi: 10.1016/j.ejcb.2024.151442 |
| [57] |
Nikiforov VS, Blinova EA, Kotikova AI, et al. Transcriptional activity of repair, apoptosis and cell cycle genes (TP53, MDM2, ATM, BAX, BCL-2, CDKN1A, OGG1, XPC, PADI4, MAPK8, NF-KB1, STAT3, GATA3) in chronically exposed persons with different intensity of apoptosis of peripheral blood lymphocytes. Vavilov Journal of Genetics and Breeding. 2022;26(1):50–58. EDN: KBBUEC doi: 10.18699/VJGB-22-08 |
| [58] |
Никифоров В.С., Блинова Е.А., Котикова А.И., Аклеев А.В. Транскрипционная активность генов репарации, апоптоза и клеточного цикла (TP53, MDM2, ATM, BAX, BCL-2, CDKN1A, OGG1, XPC, PADI4, MAPK8, NF-KB1, STAT3, GATA3) у хронически облученных людей с различной интенсивностью апоптоза лимфоцитов периферической крови // Вавиловский журнал генетики и селекции. 2022. Т. 26, № 1. С. 50–58. EDN: KBBUEC doi: 10.18699/VJGB-22-08 |
| [59] |
Ihnatsenko SI, Kosmacheva SM, Potapnev MP, et al. Growth-stimulating activity of platelet preparations in relation to mesenchymal stem cells in vitro. Proceedings of the National Academy of Sciences of Belarus, Biological Series [Vescì Nacyânalʹnaj akadèmìì navuk Belarusì. Seryâ bìâlagìčnyh navuk]. 2016;(1):52–58. |
| [60] |
Игнатенко С.И., Космачева С.М., Потапнев М.П., и др. Рост-стимулирующая активность препаратов тромбоцитов в отношении мезенхимальных стволовых клеток in vitro // Известия Национальной академии наук Беларуси. Серия биологических наук. 2016. № 1. С. 52–58. |
| [61] |
Strunk D, Lozano M, Marks DC, et al. International forum on GMP-grade human platelet lysate for cell propagation: summary. Vox Sang. 2018;113(1):80–87. doi: 10.1111/vox.12593 |
| [62] |
Strunk D., Lozano M., Marks D.C., et al. International forum on GMP-grade human platelet lysate for cell propagation: summary // Vox Sang. 2018. Vol. 113, N 1. P. 80–87. doi: 10.1111/vox.12593 |
Eco-Vector
/
| 〈 |
|
〉 |