Methods of karyoplast cell cycle synchronization for increasing the efficiency of somatic cloning of farm animals
Anastasia S. Zhukova
Genes & Cells ›› 2024, Vol. 19 ›› Issue (3) : 319 -333.
Methods of karyoplast cell cycle synchronization for increasing the efficiency of somatic cloning of farm animals
Somatic cloning is a method of obtaining genetically identical offspring, which for some reason have extremely low efficiency. Methods to increase the effectiveness of this procedure aimed at optimizing each of its stages, one of which is karyoplast preparation. In most experiments, to obtain cloned offspring, oocytes are used as recipient cells at the metaphase of the second meiotic division without prior activation, which determines the choice of somatic cells as karyoplasts at the G0/G1 stage, the most optimal for subsequent nuclear reprogramming by oocyte cytoplasmic factors. Serum starvation and/or contact inhibition are the most commonly used methods for arresting cells in this phase, which allows the arrest of up to 90% of cells at the G0/G1 stage. Despite the effectiveness of these methods, they have some significant limitations; therefore, the addition of components to the culture medium of somatic cells that prevent the progression of cells through the cell cycle stages is becoming widespread. Some chemical inhibitors have a protective effect on somatic cells, preventing the induction of apoptotic changes. Although the efficacy of butyrolactone I, mimosine, and aphidicolin application is controversial, several studies have attested the possibility of using these drugs to synchronize the karyoplasts. Thus, several methods can be employed for effective synchronization of the cell cycle of karyoplasts. When choosing the optimal method, the type of cells, species of animals from which they were obtained, and permissible duration of cultivation under given conditions must be considered to minimize the negative effect of conditions on karyoplast viability.
SCNT / somatic cloning / cell cycle synchronization / roscovitine / rapamycin / serum starvation / contact inhibition
| [1] |
Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A. 1952;38(5):455–463. doi: 10.1073/pnas.38.5.455 |
| [2] |
Briggs R., King T.J. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs // Proc Natl Acad Sci U S A. 1952. Vol. 38, N 5. P. 455–463. doi: 10.1073/pnas.38.5.455 |
| [3] |
Klinger B, Schnieke A. 25th anniversary of cloning by somatic cell nuclear transfer. Twenty-five years after Dolly: how far have we come? Reproduction. 2021;162(1):F1–F10. doi: 10.1530/REP-20-0652 |
| [4] |
Klinger B., Schnieke A. 25th anniversary of cloning by somatic cell nuclear transfer. Twenty-five years after Dolly: how far have we come? // Reproduction. 2021. Vol. 162, N 1. P. F1–F10. doi: 10.1530/REP-20-0652 |
| [5] |
Wilmut I, Schnieke A, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385(6619):810–813. Corrected and republished from: Nature 1997;386(6621):200. doi: 10.1038/385810a0 |
| [6] |
Wilmut I., Schnieke A., McWhir J., et al. Viable offspring derived from fetal and adult mammalian cells // Nature. 1997. Vol. 385, N 6619. P. 810–813. Corrected and republished from: Nature. 1997. Vol. 386, N 6621. P. 200. doi: 10.1038/385810a0 |
| [7] |
Shakweer WME, Krivoruchko AY, Dessouki SM, Khattab AA. A review of transgenic animal techniques and their applications. J Genet Eng Biotechnol. 2023;21(1):55. doi: 10.1186/s43141-023-00502-z |
| [8] |
Shakweer W.M.E., Krivoruchko A.Y., Dessouki S.M., et al. A review of transgenic animal techniques and their applications // J Genet Eng Biotechnol. 2023. Vol. 21, N 1. P. 55. doi: 10.1186/s43141-023-00502-z |
| [9] |
Lee JE, Chung YG, Eum JH, et al. An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks. BMB Rep. 2016;49(4):197–198. doi: 10.5483/bmbrep.2016.49.4.055 |
| [10] |
Lee J.E., Chung Y.G., Eum J.H., et al. An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks // BMB Rep. 2016. Vol. 49, N 4. P. 197–198. doi: 10.5483/bmbrep.2016.49.4.055 |
| [11] |
Keefer CL. Artificial cloning of domestic animals. Proc Natl Acad Sci USA. 2015;12(29):8874–8878. doi: 10.1073/pnas.1501718112 |
| [12] |
Keefer C.L. Artificial cloning of domestic animals // Proc Natl Acad Sci USA. 2015. Vol. 12, N 29. P. 8874–8878. doi: 10.1073/pnas.1501718112 |
| [13] |
Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci. 2013;368(1609):20110329. doi: 10.1098/rstb.2011.0329 |
| [14] |
Ogura A., Inoue K., Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer // Philos Trans R Soc Lond B Biol Sci. 2013. Vol. 368, N 1609. P. 20110329. doi: 10.1098/rstb.2011.0329 |
| [15] |
Zhang X, Gao S, Liu X. Advance in the role of epigenetic reprogramming in somatic cell nuclear transfer-mediated embryonic development. Stem Cells Int. 2021;2021b:6681337. doi: 10.1155/2021/6681337 |
| [16] |
Zhang X., Gao S., Liu X. Advance in the role of epigenetic reprogramming in somatic cell nuclear transfer-mediated embryonic development // Stem Cells Int. 2021. Vol. 2021. P. 6681337. doi: 10.1155/2021/6681337 |
| [17] |
Malin K, Witkowska-Piłaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology. 2022;189:246–254. doi: 10.1016/j.theriogenology.2022.06.030 |
| [18] |
Malin K., Witkowska-Piłaszewicz O., Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals // Theriogenology. 2022. Vol. 189. P. 246–254. doi: 10.1016/j.theriogenology.2022.06.030 |
| [19] |
Lopukhov AV, Singina GN, Zinovieva NA. Biotechnological bases of the development of cloned pig embryos. Vavilov Journal of Genetics and Breeding. 2019;23(5):527–533. EDN: LCBRWK doi: 10.18699/VJ19.521 |
| [20] |
Лопухов А.В., Сингина Г.Н., Зиновьева Н.А. Биотехнологические основы получения клонированных эмбрионов свиней // Вавиловский журнал генетики и селекции. 2019.Т. 23, № 5. С. 527–533. EDN: LCBRWK doi: 10.18699/VJ19.521 |
| [21] |
Srirattana K, Kaneda M, Parnpai R. Strategies to improve the efficiency of somatic cell nuclear transfer. Int J Mol Sci. 2022;23:1969. doi: 10.3390/ijms23041969 |
| [22] |
Srirattana K., Kaneda M., Parnpai R. Strategies to improve the efficiency of somatic cell nuclear transfer // Int J Mol Sci. 2022. Vol. 23, N 4. P. 1969. doi: 10.3390/ijms23041969 |
| [23] |
Gouveia C, Huyser C, Egli D, et al. Lessons learned from somatic cell nuclear transfer. Int J Mol Sci. 2020;21(7):2314. doi: 10.3390/ijms21072314 |
| [24] |
Gouveia C., Huyser C., Egli D., Pepper MS. Lessons learned from somatic cell nuclear transfer // Int J Mol Sci. 2020. Vol. 21, N 7. P. 2314. doi: 10.3390/ijms21072314 |
| [25] |
Zhao Q, Qiu J, Feng Z, et al. Robotic label-free precise oocyte enucleation for improving developmental competence of cloned embryos. IEEE Trans Biomed Eng. 2021;68(8):2348–2359. doi: 10.1109/TBME.2020.3036494 |
| [26] |
Zhao Q., Qiu J., Feng Z., et al. Robotic label-free precise oocyte enucleation for improving developmental competence of cloned embryos // IEEE Trans Biomed Eng. 2021. Vol. 68, N 8. P. 2348–2359. doi: 10.1109/TBME.2020.3036494 |
| [27] |
Vazquez-Avendanõ JR, Ambríz-García DA, Cortez-Romero C. Current state of the efficiency of sheep embryo production through somatic cell nuclear transfer. Small Rumin Res. 2022;212:106702. doi: 10.1016/j.smallrumres.2022.106702 |
| [28] |
Vazquez-Avendanõ J.R., Ambríz-García D.A., Cortez-Romero C. Current state of the efficiency of sheep embryo production through somatic cell nuclear transfer // Small Rumin Res. 2022. Vol. 212. P. 106702. doi: 10.1016/j.smallrumres.2022.106702 |
| [29] |
Samiec M. Molecular mechanism and application of somatic cell cloning in mammals — past, present and future. Int J Mol Sci. 2022;23(22):13786. doi: 10.3390/ijms232213786 |
| [30] |
Samiec M. Molecular mechanism and application of somatic cell cloning in mammals — past, present and future // Int J Mol Sci. 2022. Vol. 23, N 22. P. 13786. doi: 10.3390/ijms232213786 |
| [31] |
Yao Y, Yang A, Li G, et al. Melatonin promotes the development of sheep transgenic cloned embryos by protecting donor and recipient cells. Cell Cycle. 2022;21(13):1360–1375. doi: 10.1080/15384101.2022.2051122 |
| [32] |
Yao Y., Yang A., Li G., et al. Melatonin promotes the development of sheep transgenic cloned embryos by protecting donor and recipient cells // Cell Cycle. 2022. Vol. 21, N 13. P. 1360–1375. doi: 10.1080/15384101.2022.2051122 |
| [33] |
Wang Y, Qi JJ, Yin YJ, et al. Ferulic acid enhances oocyte maturation and the subsequent development of bovine oocytes. Int J Mol Sci. 2023;24(19):14804. doi: 10.3390/ijms241914804 |
| [34] |
Wang Y., Qi J.J., Yin Y.J., et al. Ferulic acid enhances oocyte maturation and the subsequent development of bovine oocytes // Int J Mol Sci. 2023. Vol. 24, N 19. P. 14804. doi: 10.3390/ijms241914804 |
| [35] |
Himaki T, Hano K. Effects of alpha lipoic acid treatment during in vitro maturation on the development of porcine somatic cell nuclear transfer embryos. Anim Sci J. 2023;94(1):e13889. doi: 10.1111/asj.13889 |
| [36] |
Himaki T., Hano K. Effects of alpha lipoic acid treatment during in vitro maturation on the development of porcine somatic cell nuclear transfer embryos // Anim Sci J. 2023. Vol. 94, N 1. P. e13889. doi: 10.1111/asj.13889 |
| [37] |
Vajta G, Lewis IM, Trounson AO, et al. Handmade somatic cell cloning in cattle: Analysis of factors contributing to high efficiency in vitro. Biol Reprod. 2003;68(2):571–578. doi: 10.1095/biolreprod.102.008771 |
| [38] |
Vajta G., Lewis I.M., Trounson A.O., et al. Handmade somatic cell cloning in cattle: Analysis of factors contributing to high efficiency in vitro // Biol Reprod. 2003. Vol. 68, N 2. P. 571–578. doi: 10.1095/biolreprod.102.008771 |
| [39] |
Kang JS, Joo MD, Lee SH, et al. Effect of additional cytoplasm injection on the cloned bovine embryo organelle distribution and stress mitigation. Theriogenology. 2024;216:12–19. doi: 10.1016/j.theriogenology.2023.11.031 |
| [40] |
Kang J.S., Joo M.D., Lee S.H., et al. Effect of additional cytoplasm injection on the cloned bovine embryo organelle distribution and stress mitigation // Theriogenology. 2024. Vol. 216. P. 12–19. doi: 10.1016/j.theriogenology.2023.11.031 |
| [41] |
Srirattana K, St John JC. Manipulating the mitochondrial genome to enhance cattle embryo development. G3 (Bethesda). 2017;7(7):2065–2080. doi: 10.1534/g3.117.042655 |
| [42] |
Srirattana K., St John J.C. Manipulating the mitochondrial genome to enhance cattle embryo development // G3 (Bethesda). 2017. Vol. 7, N 7. P. 2065–2080. doi: 10.1534/g3.117.042655 |
| [43] |
Srirattana K, St. John JC. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Sci Rep. 2018;8(1):7246. doi: 10.1038/s41598-018-25516-3 |
| [44] |
Srirattana K., St John J.C. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer // Sci Rep. 2018. Vol. 8, N 1. P. 7246. doi: 10.1038/s41598-018-25516-3 |
| [45] |
Liao Z, Zhang J, Sun S. et al. Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer. Nat Commun. 2024;15(1):5. doi: 10.1038/s41467-023-43985-7 |
| [46] |
Liao Z., Zhang J., Sun S., et al. Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer // Nat Commun. 2024. Vol. 15, N 1. P. 5. doi: 10.1038/s41467-023-43985-7 |
| [47] |
Lu F, Zhang Y. Cell totipotency: molecular features, induction, and maintenance. Natl Sci Rev. 2015;2(2):217–225. doi: 10.1093/nsr/nwv009 |
| [48] |
Lu F., Zhang Y. Cell totipotency: molecular features, induction, and maintenance // Natl Sci Rev. 2015. Vol. 2, N 2. P. 217–225. doi: 10.1093/nsr/nwv009 |
| [49] |
Weidgang CE, Seufferlein T, Kleger A, Mueller M. Pluripotency factors on their lineage move. Stem Cells Int. 2016;2016:6838253. doi: 10.1155/2016/6838253 |
| [50] |
Weidgang C.E., Seufferlein T., Kleger A., Mueller M. Pluripotency factors on their lineage move // Stem Cells Int. 2016. Vol. 2016. P. 6838253. doi: 10.1155/2016/6838253 |
| [51] |
Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell. 2008;132(4):567–582. doi: 10.1016/j.cell.2008.01.015 |
| [52] |
Jaenisch R., Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming // Cell. 2008. Vol. 132, N 4. P. 567–582. doi: 10.1016/j.cell.2008.01.015 |
| [53] |
Hanna JH, Saha K, Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell. 2010;143(4):508–525. doi: 10.1016/j.cell.2010.10.008 |
| [54] |
Hanna J.H., Saha K., Jaenisch R. Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues // Cell. 2010. Vol. 143, N 4. P. 508–525. doi: 10.1016/j.cell.2010.10.008 |
| [55] |
Czołowska R, Modliński JA, Tarkowski AK. Behaviour of thymocyte nuclei in non-activated and activated mouse oocytes. J Cell Sci. 1984;69:19–34. doi: 10.1242/jcs.69.1.19 |
| [56] |
Czołowska R., Modliński J.A., Tarkowski A.K. Behaviour of thymocyte nuclei in non-activated and activated mouse oocytes // J Cell Sci. 1984. Vol. 69. P. 19–34. doi: 10.1242/jcs.69.1.19 |
| [57] |
Barnes FL, Collas P, Powell R, et al. Influence of recipient oocyte cell cycle stage on DNA synthesis, nuclear envelope breakdown, chromosome constitution, and development in nuclear transplant bovine embryos. Mol Reprod Dev. 1993;36(1):33–41. doi: 10.1002/mrd.1080360106 |
| [58] |
Barnes F.L., Collas P., Powell R., et al. Influence of recipient oocyte cell cycle stage on DNA synthesis, nuclear envelope breakdown, chromosome constitution, and development in nuclear transplant bovine embryos // Mol Reprod Dev. 1993. Vol. 36, N 1. P. 33–41. doi: 10.1002/mrd.1080360106 |
| [59] |
Campbell KH, Ritchie WA, Wilmut I. Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development. Biol Reprod. 1993;49:933–942. doi: 10.1095/biolreprod49.5.933 |
| [60] |
Campbell K.H., Ritchie W.A., Wilmut I. Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development // Biol Reprod. 1993. Vol. 49, N 5. P. 933–942. doi: 10.1095/biolreprod49.5.933 |
| [61] |
Campbell KHS, Choi I, Zhu J, et al. Cell cycle regulation in cloning. In: Cibelli J, Wilmut I, Jaenisch R, et al, editors. Principles of cloning (second edition). San Diego: Academic Press; 2014. P. 149–160. doi: 10.1016/B978-0-12-386541-0.00012-6 |
| [62] |
Campbell K.H.S., Choi I., Zhu J., et al. Cell cycle regulation in cloning. In: Cibelli J., Wilmut I., Jaenisch R., et al, editors. Principles of cloning (second edition). San Diego: Academic Press, 2014. P. 149–160. doi: 10.1016/B978-0-12-386541-0.00012-6 |
| [63] |
Jullien J, Pasque V, Halley-Stott RP, et al. Mechanisms of nuclear reprogramming by eggs and oocytes: A deterministic process? Nat Rev Mol Cell Biol. 2011;12(7):453–459. doi: 10.1038/nrm3140 |
| [64] |
Jullien J., Pasque V., Halley-Stott R.P., et al. Mechanisms of nuclear reprogramming by eggs and oocytes: a deterministic process? // Nat Rev Mol Cell Biol. 2011. Vol. 12, N 7. P. 453–459. doi: 10.1038/nrm3140 |
| [65] |
Xu R, Zhang S, Lei A. Chromatin changes in reprogramming of mammalian somatic cells. Rejuvenation Res. 2014;17(1):3–10. doi: 10.1089/rej.2013.1455 |
| [66] |
Xu R., Zhang S., Lei A. Chromatin changes in reprogramming of mammalian somatic cells // Rejuvenation Res. 2014. Vol. 17, N 1. P. 3–10. doi: 10.1089/rej.2013.1455 |
| [67] |
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of chromatin and epigenetic reprogramming in porcine SCNT embryos-progresses and perspectives. Front Cell Dev Biol. 2022;10:940197. doi: 10.3389/fcell.2022.940197 |
| [68] |
Glanzner W.G., de Macedo M.P., Gutierrez K., Bordignon V. Enhancement of chromatin and epigenetic reprogramming in porcine SCNT embryos-progresses and perspectives // Front Cell Dev Biol. 2022. Vol. 10. P. 940197. doi: 10.3389/fcell.2022.940197 |
| [69] |
Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M. Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol. 2011;12(1):36–47. Corrected and republished from: Nat Rev Mol Cell Biol. 2011;12(4):273. doi: 10.1038/nrm3036 |
| [70] |
Gaspar-Maia A., Alajem A., Meshorer E., Ramalho-Santos M. Open chromatin in pluripotency and reprogramming // Nat Rev Mol Cell Biol. 2011. Vol. 12, N 1. P. 36–47. Corrected and republished from: Nat Rev Mol Cell Biol. 2011. Vol. 12, N 4. P. 273. doi: 10.1038/nrm3036 |
| [71] |
Gonzales-Munoz E, Cibelli JB. Somatic cell reprogramming informed by the oocyte. Stem Cells Dev. 2018:27(13):871–887. doi: 10.1089/scd.2018.0066 |
| [72] |
Gonzales-Munoz E., Cibelli J.B. Somatic cell reprogramming informed by the oocyte // Stem Cells Dev. 2018. Vol. 27, N 13. P. 871–887. doi: 10.1089/scd.2018.0066 |
| [73] |
Zhao J, Hao Y, Ross JW, et al. Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram. 2010;12(1):75–83. doi: 10.1089/cell.2009.0038 |
| [74] |
Zhao J., Hao Y., Ross J.W., et al. Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos // Cell Reprogram. 2010. Vol. 12, N 1. P. 75–83. doi: 10.1089/cell.2009.0038 |
| [75] |
Taweechaipaisankul A, Jin JX, Lee S, et al. Improved early development of porcine cloned embryos by treatment with quisinostat, a potent histone deacetylase inhibitor. J Reprod Dev. 2019;65(2):103–112. doi: 10.1262/jrd.2018-098 |
| [76] |
Taweechaipaisankul A., Jin J.X., Lee S., et al. Improved early development of porcine cloned embryos by treatment with quisinostat, a potent histone deacetylase inhibitor // J Reprod Dev. 2019. Vol. 65, N 2. P. 103–112. doi: 10.1262/jrd.2018-098 |
| [77] |
Zhai Y, Zhang Z, Yu H, et al. Dynamic methylation changes of DNA and H3K4 by RG108 improve epigenetic reprogramming of somatic cell nuclear transfer embryos in pigs. Cell Physiol Biochem. 2018;50(4):1376–1397. doi: 10.1159/000494598 |
| [78] |
Zhai Y., Zhang Z., Yu H., et al. Dynamic methylation changes of DNA and H3K4 by RG108 improve epigenetic reprogramming of somatic cell nuclear transfer embryos in pigs // Cell Physiol Biochem. 2018. Vol. 50, N 4. P. 1376–1397. doi: 10.1159/000494598 |
| [79] |
Matoba S, Liu Y, Lu F, et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell. 2014;159:884–895. doi: 10.1016/j.cell.2014.09.055 |
| [80] |
Matoba S., Liu Y., Lu F., et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation // Cell. 2014. Vol. 159, N 4. P. 884–895. doi: 10.1016/j.cell.2014.09.055 |
| [81] |
Gao R, Wang C, Gao Y, et al. Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell. 2018;23:426–435.e5. doi: 10.1016/j.stem.2018.07.017 |
| [82] |
Gao R., Wang C., Gao Y., et al. Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos // Cell Stem Cell. 2018. Vol. 23, N 3. P. 426–435. doi: 10.1016/j.stem.2018.07.017 |
| [83] |
Wang Z, Meissner A, Jaenisch R. Nuclear cloning and epigenetic reprogramming. In: Lanza R, Gearhart J, Hogan B, et al, editors. Handbook of stem cells. London: Elsevier Academic press; 2004. P. 119–127. doi: 10.1016/B978-012436643-5/50019-5 |
| [84] |
Wang Z., Meissner A., Jaenisch R. Nuclear cloning and epigenetic reprogramming. In: Lanza R., Gearhart J., Hogan B., et al, editors. Handbook of stem cells. London: Elsevier Academic press, 2004. P. 119–127. doi: 10.1016/B978-012436643-5/50019-5 |
| [85] |
Nguyen VK, Somfai T, Salamone D, et al. Optimization of donor cell cycle synchrony, maturation media and embryo culture system for somatic cell nuclear transfer in the critically endangered Vietnamese — pig. Theriogenology. 2021;166:21–28. doi: 10.1016/j.theriogenology.2021.02.008 |
| [86] |
Nguyen V.K., Somfai T., Salamone D., et al. Optimization of donor cell cycle synchrony, maturation media and embryo culture system for somatic cell nuclear transfer in the critically endangered Vietnamese — pig // Theriogenology. 2021. Vol. 166. P. 21–28. doi: 10.1016/j.theriogenology.2021.02.008 |
| [87] |
Lai L, Tao T, Macháty Z, et al. Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors. Biol Reprod. 2001;65(5):1558–1564. doi: 10.1095/biolreprod65.5.1558 |
| [88] |
Lai L., Tao T., Macháty Z., et al. Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors // Biol Reprod. 2001. Vol. 65, N 5. P. 1558–1564. doi: 10.1095/biolreprod65.5.1558 |
| [89] |
Tani T, Kato Y, Tsunoda Y. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol Reprod. 2001;64(4):324–330. doi: 10.1095/biolreprod64.1.324 |
| [90] |
Tani T., Kato Y., Tsunoda Y. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming // Biol Reprod. 2001. Vol. 64, N 1. P. 324–330. doi: 10.1095/biolreprod64.1.324 |
| [91] |
Wu B, Ignotz G, Currie WB, Yang X. Dynamics of maturation-promoting factor and its constituent proteins during in vitro maturation of bovine oocytes. Biol Reprod. 1997;56(1):253–259. doi: 10.1095/biolreprod56.1.253 |
| [92] |
Wu B., Ignotz G., Currie W.B., et al. Dynamics of maturation-promoting factor and its constituent proteins during in vitro maturation of bovine oocytes // Biol Reprod. 1997. Vol. 56, N 1. P. 253–259. doi: 10.1095/biolreprod56.1.253 |
| [93] |
Polejaeva IA. 25th anniversary of cloning by somatic cell nuclear transfer: generation of genetically engineered livestock using somatic cell nuclear transfer. Reproduction. 2021;162(1):F11. doi: 10.1530/REP-21-0072 |
| [94] |
Polejaeva I.A. 25th anniversary of cloning by somatic cell nuclear transfer: generation of genetically engineered livestock using somatic cell nuclear transfer // Reproduction. 2021. Vol. 162, N 1. P. F11. doi: 10.1530/REP-21-0072 |
| [95] |
Kato Y, Tsunoda Y. Role of the donor nuclei in cloning efficiency: can the ooplasm reprogram any nucleus? Int J Dev Biol. 2010;54:1623–1629. doi: 10.1387/ijdb.103203yk |
| [96] |
Kato Y., Tsunoda Y. Role of the donor nuclei in cloning efficiency: can the ooplasm reprogram any nucleus? // Int J Dev Biol. 2010. Vol. 54, N 11-12. P. 1623–1629. doi: 10.1387/ijdb.103203yk |
| [97] |
Kikyo N, Wolffe AP. Reprogramming nuclei: Insights from cloning, nuclear transfer and heterokaryons. J Cell Sci. 2000;113(Pt 1):11–20. doi: 10.1242/jcs.113.1.11 |
| [98] |
Kikyo N., Wolffe A.P. Reprogramming nuclei: Insights from cloning, nuclear transfer and heterokaryons // J Cell Sci. 2000. Vol. 113, Pt 1. P.11–20. doi: 10.1242/jcs.113.1.11 |
| [99] |
Hosseini SM, Hajian M, Moulavi F, et al. Cloned sheep blastocysts derived from oocytes enucleated manually using a pulled Pasteur pipette. Cell Reprogram. 2013;15(1):15–23. doi: 10.1089/cell.2012.0033 |
| [100] |
Hosseini S.M., Hajian M., Moulavi F., et al. Cloned sheep blastocysts derived from oocytes enucleated manually using a pulled Pasteur pipette // Cell Reprogram. 2013. Vol. 15, N 1. P. 15–23. doi: 10.1089/cell.2012.0033 |
| [101] |
Wang Y, Liu Q, Kang J, et al. Overexpression of PGC7 in donor cells maintains the DNA methylation status of imprinted genes in goat embryos derived from somatic cell nuclear transfer technology. Theriogenology. 2020;151:86–94. doi: 10.1016/j.theriogenology.2020.04.013 |
| [102] |
Wang Y., Liu Q., Kang J., et al. Overexpression of PGC7 in donor cells maintains the DNA methylation status of imprinted genes in goat embryos derived from somatic cell nuclear transfer technology // Theriogenology. 2020. Vol. 151. P. 86–94. doi: 10.1016/j.theriogenology.2020.04.013 |
| [103] |
Huang Y, Zhang J, Li X, et al. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development. FASEB J. 2023;37(9):e23111. doi: 10.1096/fj.202300131RRR |
| [104] |
Huang Y., Zhang J., Li X., et al. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development // FASEB J. 2023. Vol. 37, N 9. P. e23111. doi: 10.1096/fj.202300131RRR |
| [105] |
Sangalli JR, Sampaio RV, De Bem THC, et al. Cattle cloning by somatic cell nuclear transfer. Methods Mol Biol. 2023;2647:225–244. doi: 10.1007/978-1-0716-3064-8_12 |
| [106] |
Sangalli J.R., Sampaio R.V., De Bem T.H.C., et al. Cattle cloning by somatic cell nuclear transfer // Methods Mol Biol. 2023. Vol. 2647. P. 225–244. doi: 10.1007/978-1-0716-3064-8_12 |
| [107] |
Rim CS, Kim YS, Rim CH, et al. Effect of roscovitine pretreatment for increased utilization of small follicle-derived oocytes on developmental competence of somatic cell nuclear transfer embryos in pigs. Anim Reprod Sci. 2022;241:106987. doi: 10.1016/j.anireprosci.2022.106987 |
| [108] |
Rim C.S., Kim Y.S., Rim C.H., et al. Effect of roscovitine pretreatment for increased utilization of small follicle-derived oocytes on developmental competence of somatic cell nuclear transfer embryos in pigs // Anim Reprod Sci. 2022. Vol. 241. P. 106987. doi: 10.1016/j.anireprosci.2022.106987 |
| [109] |
Cai L, Hyun SH, Kim E. Stem cell factor’s role in enhancing the quality of fertilized and cloned porcine embryos for improved embryonic stem cell derivation. Front Vet Sci. 2023;10:1285530. doi: 10.3389/fvets.2023.1285530 |
| [110] |
Cai L., Hyun S.H., Kim E. Stem cell factor’s role in enhancing the quality of fertilized and cloned porcine embryos for improved embryonic stem cell derivation // Front Vet Sci. 2023. Vol. 10. P. 1285530. doi: 10.3389/fvets.2023.1285530 |
| [111] |
Hosseini SM, Moulavi F, Foruzanfar M, et al. Effect of donor cell type and gender on the efficiency of in vitro sheep somatic cell cloning. Small Ruminant Research. 2008;78(1–3):162–168. doi: 10.1016/j.smallrumres.2008.06.004 |
| [112] |
Hosseini S.M., Moulavi F., Foruzanfar M., et al. Effect of donor cell type and gender on the efficiency of in vitro sheep somatic cell cloning // Small Ruminant Research. 2008. Vol. 78, N 1–3. P. 162–168. doi: 10.1016/j.smallrumres.2008.06.004 |
| [113] |
Xu J, Shi P, Zhao X, et al. Cell synchronization by rapamycin improves the developmental competence of buffalos (Bubalus bubalis) somatic cell nuclear transfer embryos. Reprod Domest Anim. 2021;56(2):313–323. doi: 10.1111/rda.13868 |
| [114] |
Xu J., Shi P., Zhao X., et al. Cell synchronization by rapamycin improves the developmental competence of buffalos (Bubalus bubalis) somatic cell nuclear transfer embryos // Reprod Domest Anim. 2021. Vol. 56, N 2. P. 313–323. doi: 10.1111/rda.13868 |
| [115] |
Hyun H, Lee SE, Son YJ, et al. Cell synchronization by rapamycin improves the developmental competence of porcine SCNT embryos. Cell Reprogram. 2016;18(3):195–205. doi: 10.1089/cell.2015.0090 |
| [116] |
Hyun H., Lee S.E., Son Y.J., et al. Cell synchronization by rapamycin improves the developmental competence of porcine SCNT embryos // Cell Reprogram. 2016. Vol. 18, N 3. P. 195–205. doi: 10.1089/cell.2015.0090 |
| [117] |
Kues WA, Anger M, Carnwath JW, et al. Cell cycle synchronization of porcine fetal fibroblasts: Effects of serum deprivation and reversible cell cycle inhibitors. Biol Reprod. 2000;62(2):412–419. doi: 10.1095/biolreprod62.2.412 |
| [118] |
Kues W.A., Anger M., Carnwath J.W., et al. Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors // Biol Reprod. 2000. Vol. 62, N 2. P. 412–419. doi: 10.1095/biolreprod62.2.412 |
| [119] |
Cho SR, Ock SA, Yoo JG, et al. Effects of confluent, roscovitine treatment and serum starvation on the cell-cycle synchronization of bovine foetal fibroblasts. Reprod Domest Anim. 2005;40(2):171–176. doi: 10.1111/j.1439-0531.2005.00577.x |
| [120] |
Cho S.R., Ock S.A., Yoo J.G., et al. Effects of confluent, roscovitine treatment and serum starvation on the cell-cycle synchronization of bovine foetal fibroblasts // Reprod Domest Anim. 2005. Vol. 40, N 2. P. 171–176. doi: 10.1111/j.1439-0531.2005.00577.x |
| [121] |
Sadeghian-Nodoushan F, Eftekhari-Yazdi P, Dalman A, et al. Mimosine as well as serum starvation can be used for cell cycle synchronization of sheep granulosa cells. Chinese Journal of Biology. 2014;2014:851736. doi: 10.1155/2014/851736 |
| [122] |
Sadeghian-Nodoushan F., Eftekhari-Yazdi P., Dalman A., et al. Mimosine as well as serum starvation can be used for cell cycle synchronization of sheep granulosa cells // Chinese Journal of Biology. 2014. Vol. 2014. P. 851736. doi: 10.1155/2014/851736 |
| [123] |
Rodrigues LLV, Moura YBF, Viana JVDS, et al. Full confluency, serum starvation, and roscovitine for inducing arrest in the G0/G1 phase of the cell cycle in puma skin-derived fibroblast lines. Anim Reprod. 2023;20(1):e20230017. doi: 10.1590/1984-3143-AR2023-0017 |
| [124] |
Rodrigues L.L.V., Moura Y.B.F., Viana J.V.D.S., et al. Full confluency, serum starvation, and roscovitine for inducing arrest in the G0/G1 phase of the cell cycle in puma skin-derived fibroblast lines // Anim Reprod. 2023. Vol. 20, N 1. P. e20230017. doi: 10.1590/1984-3143-AR2023-0017 |
| [125] |
Yagcioglu S, Ersoy N, Demir K, et al. Can roscovitine and trichostatin A be alternatives to standard protocols for cell cycle synchronization of ovine adult and foetal fibroblast cells? Reprod Domest Anim. 2023;58(9):1251–1260. doi: 10.1111/rda.14425 |
| [126] |
Yagcioglu S., Ersoy N., Demir K., et al. Can roscovitine and trichostatin A be alternatives to standard protocols for cell cycle synchronization of ovine adult and foetal fibroblast cells? // Reprod Domest Anim. 2023. Vol. 58, N 9. P. 1251–1260. doi: 10.1111/rda.14425 |
| [127] |
Zhao B, Li H, Zhang H, et al. The effect of L-carnitine supplementation during in vitro maturation on oocyte maturation and somatic cloned embryo development. Reprod Biol. 2024;24(2):100853. doi: 10.1016/j.repbio.2023.100853 |
| [128] |
Zhao B., Li H., Zhang H., et al. The effect of L-carnitine supplementation during in vitro maturation on oocyte maturation and somatic cloned embryo development // Reprod Biol. 2024. Vol. 24, N 2. P. 100853. doi: 10.1016/j.repbio.2023.100853 |
| [129] |
Gómez NA, Ramírez MM, Ruiz-Cortés ZT. Primary fibroblast cell cycle synchronization and effects on handmade cloned (HMC) bovine embryos. Ciênc Anim Bras. 2018;19:e48555. doi: 10.1590/1809-6891v19e-48555 |
| [130] |
Gómez N.A., Ramírez M.M., Ruiz-Cortés Z.T. Primary fibroblast cell cycle synchronization and effects on handmade cloned (HMC) bovine embryos // Ciênc Anim Bras. 2018. Vol. 19. P. e48555. doi: 10.1590/1809-6891v19e-48555 |
| [131] |
Chen M, Huang J, Yang X, et al. Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. PLoS One. 2012;7(4):e28203. doi: 10.1371/journal.pone.0028203 |
| [132] |
Chen M., Huang J., Yang X., et al. Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming // PLoS One. 2012. Vol. 7, N 4. P. e28203. doi: 10.1371/journal.pone.0028203 |
| [133] |
Zhang Y, Qu P, Ma X, et al. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One. 2018;13(5):e0196785. doi: 10.1371/journal.pone.0196785 |
| [134] |
Zhang Y., Qu P., Ma X., et al. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation // PLoS One. 2018. Vol. 13, N 5. P. e0196785. doi: 10.1371/journal.pone.0196785 |
| [135] |
Giannasi C, Niada S, Della Morte E, et al. Serum starvation affects mitochondrial metabolism of adipose-derived stem/stromal cells. Cytotherapy. 2023;25(7):704–711. doi: 10.1016/j.jcyt.2023.03.004 |
| [136] |
Giannasi C., Niada S., Della Morte E., et al. Serum starvation affects mitochondrial metabolism of adipose-derived stem/stromal cells // Cytotherapy. 2023. Vol. 25, N 7. P. 704–711. doi: 10.1016/j.jcyt.2023.03.004 |
| [137] |
Park HJ, Koo OJ, Kwon DK, et al. Effect of roscovitine-treated donor cells on development of porcine cloned embryos. Reprod Domest Anim. 2010;45(6):1082–1088. doi: 10.1111/j.1439-0531.2009.01499.x |
| [138] |
Park H.J., Koo O.J., Kwon D.K., et al. Effect of roscovitine-treated donor cells on development of porcine cloned embryos // Reprod Domest Anim. 2010. Vol. 45, N 6. P. 1082–1088. doi: 10.1111/j.1439-0531.2009.01499.x |
| [139] |
Franco R, Bortner C, Cidlowski J. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis. J Membrane Biol. 2006;209(1):43–58. doi: 10.1007/s00232-005-0837-5 |
| [140] |
Franco R., Bortner C., Cidlowski J. Potential roles of electrogenic ion transport and plasma membrane depolarization in apoptosis // J Membrane Biol. 2006. Vol. 209, N 1. P. 43–58. doi: 10.1007/s00232-005-0837-5 |
| [141] |
Rols MP. Parameters affecting cell viability following electroporation in vitro. In: Miklavčič D, editor. Handbook of electroporation. Cham: Springer International Publishing; 2017. P. 1449–1465. doi: 10.1007/978-3-319-32886-7_149 |
| [142] |
Rols M.P. Parameters affecting cell viability following electroporation in vitro. In: Miklavčič D., editor. Handbook of electroporation. Cham: Springer International Publishing, 2017. P. 1449–1465. doi: 10.1007/978-3-319-32886-7_149 |
| [143] |
Miranda MDS, Bressan FF, Zecchin KG, et al. Serum-starved apoptotic fibroblasts reduce blastocyst production but enable development to term after SCNT in cattle. Cloning Stem Cells. 2009;11(4):565–573. doi: 10.1089/clo.2009.0028 |
| [144] |
Miranda Mdos S., Bressan F.F., Zecchin K.G., et al. Serum-starved apoptotic fibroblasts reduce blastocyst production but enable development to term after SCNT in cattle // Cloning Stem Cells. 2009. Vol. 11, N 4. P. 565–573. doi: 10.1089/clo.2009.0028 |
| [145] |
Carvalho BP, Cunha ATM, Silva BDM, et al. Production of transgenic cattle by somatic cell nuclear transfer (SCNT) with the human granulocyte colony-stimulation factor (hG-CSF). J Anim Sci Technol. 2019;61(2):61–68. doi: 10.5187/jast.2019.61.2.61 |
| [146] |
Carvalho B.P., Cunha A.T.M., Silva B.D.M., et al. Production of transgenic cattle by somatic cell nuclear transfer (SCNT) with the human granulocyte colony-stimulation factor (hG-CSF) // J Anim Sci Technol. 2019. Vol. 61, N 2. P. 61–68. doi: 10.5187/jast.2019.61.2.61 |
| [147] |
Al-Ghadi MQ, Alhimaidi AR, Iwamoto D, et al. The in vitro development of cloned sheep embryos treated with Scriptaid and Trichostatin (A). Saudi J Biol Sci. 2020;27(9):2280–2286. doi: 10.1016/j.sjbs.2020.04.039 |
| [148] |
Al-Ghadi M.Q., Alhimaidi A.R., Iwamoto D., et al. The in vitro development of cloned sheep embryos treated with Scriptaid and Trichostatin (A) // Saudi J Biol Sci. 2020. Vol. 27, N 9. P. 2280–2286. doi: 10.1016/j.sjbs.2020.04.039 |
| [149] |
Cortez JV, Hardwicke K, Cuervo-Arango J, Grupen CG. Cloning horses by somatic cell nuclear transfer: Effects of oocyte source on development to foaling. Theriogenology. 2023;203:99–108. doi: 10.1016/j.theriogenology.2023.03.018 |
| [150] |
Cortez J.V., Hardwicke K., Cuervo-Arango J., Grupen C.G. Cloning horses by somatic cell nuclear transfer: effects of oocyte source on development to foaling // Theriogenology. 2023. Vol. 203. P. 99–108. doi: 10.1016/j.theriogenology.2023.03.018 |
| [151] |
Yadav PS, Kumar D, Saini M, et al. Evaluation of postnatal growth, hematology, telomere length and semen attributes of multiple clones and re-clone of superior buffalo breeding bulls. Theriogenology. 2024;213:24–33. doi: 10.1016/j.theriogenology.2023.09.024 |
| [152] |
Yadav P.S., Kumar D., Saini M., et al. Evaluation of postnatal growth, hematology, telomere length and semen attributes of multiple clones and re-clone of superior buffalo breeding bulls // Theriogenology. 2024. Vol. 213. P. 24–33. doi: 10.1016/j.theriogenology.2023.09.024 |
| [153] |
Curto M, Cole BK, Lallemand D, et al. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol. 2007;177(5):893–903. doi: 10.1083/jcb.200703010 |
| [154] |
Curto M., Cole B.K., Lallemand D., et al. Contact-dependent inhibition of EGFR signaling by Nf2/Merlin // J Cell Biol. 2007. Vol. 177, N 5. P. 893–903. doi: 10.1083/jcb.200703010 |
| [155] |
Fuse T, Tanikawa M, Nakanishi M, et al. p27Kip1 expression by contact inhibition as a prognostic index of human glioma. J Neurochem. 2000;74(4):1393–1399. doi: 10.1046/j.1471-4159.2000.0741393.x |
| [156] |
Fuse T., Tanikawa M., Nakanishi M., et al. p27Kip1 expression by contact inhibition as a prognostic index of human glioma // J Neurochem. 2000. Vol. 74, N 4. P. 1393–1399. doi: 10.1046/j.1471-4159.2000.0741393.x |
| [157] |
Wieser RJ, Faust D, Dietrich C, et al. p16INK4 mediates contact-inhibition of growth. Oncogene. 1999;18(1):277–281. doi: 10.1038/sj.onc.1202270 |
| [158] |
Wieser R.J., Faust D., Dietrich C., Oesch F. p16INK4 mediates contact-inhibition of growth // Oncogene. 1999. Vol. 18, N 1. P. 277–281. doi: 10.1038/sj.onc.1202270 |
| [159] |
Pani G, Colavitti R, Bedogni B, et al. A redox signaling mechanism for density-dependent inhibition of cell growth. J Biol Chem. 2000;275(49):38891–38899. doi: 10.1074/jbc.M007319200 |
| [160] |
Pani G., Colavitti R., Bedogni B., et al. A redox signaling mechanism for density-dependent inhibition of cell growth // J Biol Chem. 2000. Vol. 275, N 49. P. 38891–38899. doi: 10.1074/jbc.M007319200 |
| [161] |
Yang S, Hwang S, Jang J, et al. PGC1α is required for the induction of contact inhibition by suppressing ROS. Biochem Biophys Res Commun. 2018;501(3):739–744. doi: 10.1016/j.bbrc.2018.05.059 |
| [162] |
Yang S., Hwang S., Jang J., et al. PGC1α is required for the induction of contact inhibition by suppressing ROS // Biochem Biophys Res Commun. 2018. Vol. 501, N 3. P. 739–744. doi: 10.1016/j.bbrc.2018.05.059 |
| [163] |
Ma L, Liu X, Wang F, et al. Different donor cell culture methods can influence the developmental ability of cloned sheep embryos. PLoS One. 2015;10(8):e0135344. doi: 10.1371/journal.pone.0135344 |
| [164] |
Ma L., Liu X., Wang F., et al. Different donor cell culture methods can influence the developmental ability of cloned sheep embryos // PLoS One. 2015. Vol. 10, N 8. P. e0135344. doi: 10.1371/journal.pone.0135344 |
| [165] |
Wittayarat M, Thongphakdee A, Saikhun K, et al. Cell cycle synchronization of skin fibroblast cells in four species of family Felidae. Reprod Domest Anim. 2013;4(2):305–310. doi: 10.1111/j.1439-0531.2012.02149.x |
| [166] |
Wittayarat M., Thongphakdee A., Saikhun K., et al. Cell cycle synchronization of skin fibroblast cells in four species of family Felidae // Reprod Domest Anim. 2013. Vol. 4, N 2. P. 305–310. doi: 10.1111/j.1439-0531.2012.02149.x |
| [167] |
Młodawska W, Mrowiec P, Bochenek M, et al. Effect of serum starvation and contact inhibition on dermal fibroblast cell cycle synchronization in two species of wild felids and domestic cat. Annals of Animal Science. 2022;22(4):1245–1255. doi: 10.2478/aoas-2022-0042 |
| [168] |
Młodawska W., Mrowiec P., Bochenek M., et al. Effect of serum starvation and contact inhibition on dermal fibroblast cell cycle synchronization in two species of wild felids and domestic cat // Annals of Animal Science. 2022. Vol. 22, N 4. P. 1245–1255. doi: 10.2478/aoas-2022-0042 |
| [169] |
Visotskaja LV. Mitotic cycle and its regulation. Vavilov Journal of Genetics and Breeding. 2014;18(1):81–92. EDN: SJCEOR |
| [170] |
Высоцкая Л.В. Митотический цикл и его регуляция // Вавиловский журнал генетики и селекции. 2014. Т. 18, № 1. С. 81–92. EDN: SJCEOR |
| [171] |
Wang Z. Cell cycle progression and synchronization: an overview. Methods Mol Biol. 2022;2579:3–23. doi: 10.1007/978-1-0716-2736-5_1 |
| [172] |
Wang Z. Cell cycle progression and synchronization: an overview // Methods Mol Biol. 2022. Vol. 2579. P. 3–23. doi: 10.1007/978-1-0716-2736-5_1 |
| [173] |
Banfalvi G. Overview of cell synchronization. Methods Mol Biol. 2011;761:1–23. doi: 10.1007/978-1-61779-182-6_1 |
| [174] |
Banfalvi G. Overview of cell synchronization // Methods Mol Biol. 2011. Vol. 761. P. 1–23. doi: 10.1007/978-1-61779-182-6_1 |
| [175] |
Martinez Diaz MA, Suzuki M, Kagawa M, et al. Effects of cycloheximide treatment on in-vitro development of porcine parthenotes and somatic cell nuclear transfer embryos. Jpn J Vet Res. 2003;50(4):147–155. doi: 10.14943/jjvr.50.4.147 |
| [176] |
Martinez Diaz M.A., Suzuki M., Kagawa M., et al. Effects of cycloheximide treatment on in-vitro development of porcine parthenotes and somatic cell nuclear transfer embryos // Jpn J Vet Res. 2003. Vol. 50, N 4. P. 147–155. doi: 10.14943/jjvr.50.4.147 |
| [177] |
Eren A, Arat S, Tuna M, et al. Effects of confluency, roscovitine and serum starvation on the cell-cycle synchronization and viability of sheep and goat adult fibroblasts. J Biotechnol. 2014;185:S46. doi: 10.1016/j.jbiotec.2014.07.156 |
| [178] |
Eren A., Arat S., Tuna M., et al. Effects of confluency, roscovitine and serum starvation on the cell-cycle synchronization and viability of sheep and goat adult fibroblasts // J Biotechnol. 2014. Vol. 185. P. S46. doi: 10.1016/j.jbiotec.2014.07.156 |
| [179] |
Sun X, Wang S, Zhang Y, et al. Cell-cycle synchronization of fibroblasts derived from transgenic cloned cattle ear skin: effects of serum starvation, roscovitine and contact inhibition. Zygote. 2008;16(2):111–116. doi: 10.1017/S0967199407004522 |
| [180] |
Sun X., Wang S., Zhang Y., et al. Cell-cycle synchronization of fibroblasts derived from transgenic cloned cattle ear skin: Effects of serum starvation, roscovitine and contact inhibition // Zygote. 2008. Vol. 16, N 2. P. 111–116. doi: 10.1017/S0967199407004522 |
| [181] |
Hwang S, Oh KB, Kwon DJ, et al. Improvement of cloning efficiency in minipigs using post-thawed donor cells treated with roscovitine. Mol Biotechnol. 2013;55(3):212–216. doi: 10.1007/s12033-013-9671-7 |
| [182] |
Hwang S., Oh K.B., Kwon D.J., et al. Improvement of cloning efficiency in minipigs using post-thawed donor cells treated with roscovitine // Mol Biotechnol. 2013. Vol. 55, N 3. P. 212–216. doi: 10.1007/s12033-013-9671-7 |
| [183] |
Selokar NL, Saini M, Muzaffer M, et al. Roscovitine treatment improves synchronization of donor cell cycle in G0/G1 stage and in vitro development of handmade cloned buffalo (Bubalus bubalis) embryos. Cell Reprogram. 2012;14(2):146–154. doi: 10.1089/cell.2011.0076 |
| [184] |
Selokar N.L., Saini M., Muzaffer M., et al. Roscovitine treatment improves synchronization of donor cell cycle in G0/G1 stage and in vitro development of handmade cloned buffalo (Bubalus bubalis) embryos // Cell Reprogram. 2012. Vol. 14, N 2. P. 146–154. doi: 10.1089/cell.2011.0076 |
| [185] |
Vacková I, Engelová M, Marinov I, Tománek M. Cell cycle synchronization of porcine granulosa cells in G1 stage with mimosine. Anim Reprod Sci. 2003;77(3-4):235–245. doi: 10.1016/s0378-4320(03)00034-4 |
| [186] |
Vacková I., Engelová M., Marinov I., Tománek M. Cell cycle synchronization of porcine granulosa cells in G1 stage with mimosine // Anim Reprod Sci. 2003. Vol. 77, N 3-4. P. 235–245. doi: 10.1016/s0378-4320(03)00034-4 |
| [187] |
Alessi F, Quarta S, Savio M, et al. The cyclin-dependent kinase inhibitors olomoucine and roscovitine arrest human fibroblasts in G1 phase by specific inhibition of CDK2 kinase activity. Exp Cell Res. 1998;245(1):8–18. doi: 10.1006/excr.1998.4216 |
| [188] |
Alessi F., Quarta S., Savio M., et al. The cyclin-dependent kinase inhibitors olomoucine and roscovitine arrest human fibroblasts in G1 phase by specific inhibition of CDK2 kinase activity // Exp Cell Res. 1998. Vol. 245, N 1. P. 8–18. doi: 10.1006/excr.1998.4216 |
| [189] |
Banfalvi G. Erratum. Methods Mol Biol. 2017;1524:E1. doi: 10.1007/978-1-4939-6603-5_22 |
| [190] |
Banfalvi G. Erratum // Methods Mol Biol. 2017. Vol. 1524. P. E1. doi: 10.1007/978-1-4939-6603-5_22 |
| [191] |
Zhang M, Zhang L, Hei R, et al. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res. 2021;11(5):1913–1935. |
| [192] |
Zhang M., Zhang L., Hei R., et al. CDK inhibitors in cancer therapy, an overview of recent development // Am J Cancer Res. 2021. Vol. 11, N 5. P. 1913–1935. |
| [193] |
Cuyàs E, Corominas-Faja B, Joven J, Menendez JA. Cell cycle regulation by the nutrient-sensing mammalian target of rapamycin (mTOR) pathway. Methods Mol Biol. 2014;1170:113–144. doi: 10.1007/978-1-4939-0888-2_7 |
| [194] |
Cuyàs E., Corominas-Faja B., Joven J., et al. Cell cycle regulation by the nutrient-sensing mammalian target of rapamycin (mTOR) pathway // Methods Mol Biol. 2014. Vol. 1170. P. 113–144. doi: 10.1007/978-1-4939-0888-2_7 |
| [195] |
Rubinsztein DC, Mariño G, Kroemer G. Autophagy and aging. Cell. 2011;146(5):682–695. doi: 10.1016/j.cell.2011.07.030 |
| [196] |
Rubinsztein D.C., Mariño G., Kroemer G. Autophagy and aging // Cell. 2011. Vol. 146, N 5. P. 682–695. doi: 10.1016/j.cell.2011.07.030 |
| [197] |
Lee J, Park JI, Yun JI, et al. Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs. J Vet Sci. 2015;16(3):373–380. doi: 10.4142/jvs.2015.16.3.373 |
| [198] |
Lee J., Park J.I., Yun J.I., et al. Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs // J Vet Sci. 2015. Vol. 16, N 3. P. 373–380. doi: 10.4142/jvs.2015.16.3.373 |
| [199] |
Albers MW, Williams RT, Brown EJ, et al. FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin D1-Cdk association in early G1 of an osteosarcoma cell line. J Biol Chem. 1993;268(30):22825–22829. doi: 10.1016/S0021-9258(18)41602-X |
| [200] |
Albers M.W., Williams R.T., Brown E.J., et al. FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin D1-Cdk association in early G1 of an osteosarcoma cell line // J Biol Chem. 1993. Vol. 268, N 30. P. 22825–22829. doi: 10.1016/S0021-9258(18)41602-X |
| [201] |
Han J, Yan H. Inhibitory effect of rapamycin on the proliferation of Rhesus retinal vascular endothelial cells. Chinese Journal of Experimental Ophthalmology. 2014;3:216–219. |
| [202] |
Han J., Yan H. Inhibitory effect of rapamycin on the proliferation of Rhesus retinal vascular endothelial cells // Chinese Journal of Experimental Ophthalmology. 2014. N 3. P. 216–219. |
| [203] |
Jiang F, Wang Y, Du S, et al. Rapamycin prevents retinal neovascularization by downregulation of cyclin D1 in a mouse model of oxygen-induced retinopathy. BMC Ophthalmol. 2020;20(1):44. doi: 10.1186/s12886-020-1325-5 |
| [204] |
Jiang F., Wang Y., Du S., et al. Rapamycin prevents retinal neovascularization by downregulation of cyclin D1 in a mouse model of oxygen-induced retinopathy // BMC Ophthalmol. 2020. Vol. 20, N 1. P. 44. doi: 10.1186/s12886-020-1325-5 |
| [205] |
Kitagawa M, Okabe T, Ogino H, et al. Butyrolactone I, a selective inhibitor of CDK2 and CDC2 kinase. Oncogene. 1993;8(9):2425–2432. |
| [206] |
Kitagawa M., Okabe T., Ogino H., et al. Butyrolactone I, a selective inhibitor of CDK2 and CDC2 kinase // Oncogene. 1993. Vol. 8, N 9. P. 2425–2432. |
| [207] |
Liu F, Ma XH, Ule J, et al. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proc Natl Acad Sci USA. 2001;98(20):11062–11068. doi: 10.1073/pnas.191353898 |
| [208] |
Liu F., Ma X.H., Ule J., et al. Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors // Proc Natl Acad Sci USA. 2001. Vol. 98, N 20. P. 11062–11068. doi: 10.1073/pnas.191353898 |
| [209] |
Wada M, Hosotani R, Lee JU, et al. An exogenous cdk inhibitor, butyrolactone-I, induces apoptosis with increased Bax/Bcl-2 ratio in p53-mutated pancreatic cancer cells. Anticancer Res. 1998;18(4A):2559–2566. |
| [210] |
Wada M., Hosotani R., Lee J.U., et al. An exogenous CDK inhibitor, butyrolactone-I, induces apoptosis with increased Bax/Bcl-2 ratio in p53-mutated pancreatic cancer cells // Anticancer Res. 1998. Vol. 18, N 4A. P. 2559–2566. |
| [211] |
Ghfar AA, El-Metwally MM, Shaaban M, et al. Production of terretonin N and butyrolactone I by Thermophilic Aspergillus terreus TM8 promoted apoptosis and cell death in human prostate and ovarian cancer cells. Molecules. 2021;26(9):2816. doi: 10.3390/molecules26092816 |
| [212] |
Ghfar A.A., El-Metwally M.M., Shaaban M., et al. Production of terretonin N and butyrolactone I by Thermophilic Aspergillus terreus TM8 promoted apoptosis and cell death in human prostate and ovarian cancer cells // Molecules. 2021. Vol. 26, N 9. P. 2816. doi: 10.3390/molecules26092816 |
| [213] |
Monaco EA 3rd, Beaman-Hall CM, Mathur A, Vallano ML Roscovitine, olomoucine, purvalanol: Inducers of apoptosis in maturing cerebellar granule neurons. Biochem Pharmacol. 2004;67(10):1947–1964. doi: 10.1016/j.bcp.2004.02.007 |
| [214] |
Monaco E.A. 3rd, Beaman-Hall C.M., Mathur A., Vallano M.L. Roscovitine, olomoucine, purvalanol: Inducers of apoptosis in maturing cerebellar granule neurons // Biochem Pharmacol. 2004. Vol. 67, N 10. P. 1947–1964. doi: 10.1016/j.bcp.2004.02.007 |
| [215] |
Krude T. Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Exp Cell Res. 1999;247(1):148–159. doi: 10.1006/excr.1998.4342 |
| [216] |
Krude T. Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner // Exp Cell Res. 1999. Vol. 247, N 1. P. 148–159. doi: 10.1006/excr.1998.4342 |
| [217] |
Galgano PJ, Schildkraut CL. G1/S phase synchronization using mimosine arrest. CSH Protoc. 2006;2006(4):pdb.prot4488. doi: 10.1101/pdb.prot4488 |
| [218] |
Galgano P.J., Schildkraut C.L. G1/S phase synchronization using mimosine arrest // CSH Protoc. 2006. Vol. 2006, N 4. P. pdb.prot4488. doi: 10.1101/pdb.prot4488 |
| [219] |
Jackman J, O’Connor PM. Methods for synchronizing cells at specific stages of the cell cycle. Curr Protoc Cell Biol. 1998;8:8.3. doi: 10.1002/0471143030.cb0803s00 |
| [220] |
Jackman J., O’Connor P.M. Methods for synchronizing cells at specific stages of the cell cycle // Curr Protoc Cell Biol. 1998. Chapter 8, Unit 8.3. doi: 10.1002/0471143030.cb0803s00 |
| [221] |
Kim E, Zheng Z, Jeon Y, et al. An improved system for generation of diploid cloned porcine embryos using induced pluripotent stem cells synchronized to metaphase. PLoS One. 2016;11(7):e0160289. doi: 10.1371/journal.pone.0160289 |
| [222] |
Kim E., Zheng Z., Jeon Y., et al. An improved system for generation of diploid cloned porcine embryos using induced pluripotent stem cells synchronized to metaphase // PLoS One. 2016. Vol. 11, N 7. P. e0160289. doi: 10.1371/journal.pone.0160289 |
| [223] |
Ho YS, Duh JS, Jeng JH, et al. Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int J Cancer. 2001;91(3):393–401. doi: 10.1002/1097-0215(200002)9999:9999<::aid-ijc1070>3.0.co;2-# |
| [224] |
Ho Y.S., Duh J.S., Jeng J.H., et al. Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells // Int J Cancer. 2001. Vol. 91, N 3. P. 393–401. doi: 10.1002/1097-0215(200002)9999:9999<::aid-ijc1070>3.0.co;2-# |
Eco-Vector
/
| 〈 |
|
〉 |