Exome-wide association study for replication of rare variants affecting the severity of COVID-19 in the Russian population

Svetlana V. Apalko , Arina V. Nostaeva , Valentin S. Shimansky , Natalya N. Sushentseva , Oleg S. Popov , Anna Yu. Anisenkova , Sergey V. Mosenko , Oleg S. Glotov , Andrey M. Sarana , Sergey G. Shcherbak

Genes & Cells ›› 2024, Vol. 19 ›› Issue (2) : 245 -254.

PDF
Genes & Cells ›› 2024, Vol. 19 ›› Issue (2) :245 -254. DOI: 10.17816/gc624810
Original Study Articles
research-article

Exome-wide association study for replication of rare variants affecting the severity of COVID-19 in the Russian population

Author information +
History +
PDF

Abstract

BACKGROUND: Human genotype is a factor that determines the severity of COVID-19. Previously, a large-scale whole-genome association study of the COVID-19 Host Genetics Initiative (2021) investigated the association of genetic variants at multiple loci with COVID-19 severity. The genetic variants that have the greatest effect on COVID-19 severity are expected to have a low frequency in the population. Therefore, the study of rare variants may provide additional insights into the disease pathogenesis and thus help in the development of prevention and treatment options.

AIM: To search for genes enriched for rare genetic variants associated with COVID-19 severity in the Russian population by replication analysis.

METHODS: The clinical exome of a Russian cohort of patients was sequenced based on the St. Petersburg State Budgetary Institution “City Hospital No. 40” and St Petersburg University. The study used biomaterial from patients hospitalized at City Hospital No. 40 diagnosed with COVID-19 and healthy individuals (population control group). The severity of the course of COVID-19 was determined according to the results of lung computed tomography. The list of genes for subsequent replication was generated by a literature review. Burden test methods were used for the replication analysis of genes associated with COVID-19 severity.

RESULTS: In total, 701 clinical exomes were sequenced from 263 individuals with severe COVID-19 and 438 healthy individuals. In the literature review, 18 genes associated with severe COVID-19 were included in the replication analysis. The replication analysis did not identify any genes whose association with severe COVID-19 was confirmed in the study cohort.

CONCLUSION: The replication analysis did not identify any genes that showed a significant association between the functional variant enrichment and COVID-19 severity. However, the direction of the correlation was consistent with the findings of previous studies. Expanding the study cohort would increase the power of the tests and allow us to detect additional rare variants that influence the severity of COVID-19 progression.

Keywords

coronavirus infection / COVID-19 / sequencing / exome / mutations / genes

Cite this article

Download citation ▾
Svetlana V. Apalko, Arina V. Nostaeva, Valentin S. Shimansky, Natalya N. Sushentseva, Oleg S. Popov, Anna Yu. Anisenkova, Sergey V. Mosenko, Oleg S. Glotov, Andrey M. Sarana, Sergey G. Shcherbak. Exome-wide association study for replication of rare variants affecting the severity of COVID-19 in the Russian population. Genes & Cells, 2024, 19(2): 245-254 DOI:10.17816/gc624810

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

COVID-19 National Preparedness Collaborators. Pandemic preparedness and COVID-19: an exploratory analysis of infection and fatality rates, and contextual factors associated with preparedness in 177 countries, from Jan 1, 2020, to Sept 30, 2021. Lancet. 2022;399(10334):1489–1512. doi: 10.1016/S0140-6736(22)00172-6

[2]

COVID-19 National Preparedness Collaborators. Pandemic preparedness and COVID-19: an exploratory analysis of infection and fatality rates, and contextual factors associated with preparedness in 177 countries, from Jan 1, 2020, to Sept 30, 2021 // Lancet. 2022. Vol. 399, N 10334. P. 1489–1512. doi: 10.1016/S0140-6736(22)00172-6

[3]

Biswas M, Rahaman S, Biswas TK, et al. Association of sex, age, and comorbidities with mortality in COVID-19 patients: a systematic review and meta-analysis. Intervirology. 2020. doi: 10.1159/000512592

[4]

Biswas M., Rahaman S., Biswas T.K., et al. Association of sex, age, and comorbidities with mortality in covid-19 patients: a systematic review and meta-analysis // Intervirology. 2020. doi: 10.1159/000512592

[5]

Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020;92(6):568–576. doi: 10.1002/jmv.25748

[6]

Wang Y., Wang Y., Chen Y., Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures // J Med Virol. 2020. Vol. 92, N 6. P. 568–576. doi: 10.1002/jmv.25748

[7]

Fricke-Galindo I, Falfán-Valencia R. Genetics insight for COVID-19 susceptibility and severity: a review. Front Immunol. 2021;12:622176. doi: 10.3389/fimmu.2021.622176

[8]

Fricke-Galindo I., Falfán-Valencia R. Genetics insight for COVID-19 susceptibility and severity: a review // Front Immunol. 2021. Vol. 12. P. 622176. doi: 10.3389/fimmu.2021.622176

[9]

Yousefzadegan S, Rezaei N. Case report: death due to COVID-19 in three brothers. Am J Trop Med Hyg. 2020;102(6):1203–1204. doi: 10.4269/ajtmh.20-0240

[10]

Yousefzadegan S., Rezaei N. Case report: death due to COVID-19 in three brothers // Am J Trop Med Hyg. 2020. Vol. 102, N 6. P. 1203–1204. doi: 10.4269/ajtmh.20-0240

[11]

COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19. Nature. 2022;608(7921):E1–E10. doi: 10.1038/s41586-022-04826-7

[12]

COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19 // Nature. 2022. Vol. 608, N 7921. P. E1–E10. doi: 10.1038/s41586-022-04826-7

[13]

COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature. 2021;600(7889):472–477. doi: 10.1038/s41586-021-03767-x

[14]

COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19 // Nature. 2021. Vol. 600, N 7889. P. 472–477. doi: 10.1038/s41586-021-03767-x

[15]

The Severe Covid-19 GWAS Group; Ellinghaus D, Degenhardt F, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;383(16):1522–1534. doi: 10.1056/NEJMoa2020283

[16]

The Severe Covid-19 GWAS Group; Ellinghaus D., Degenhardt F., et al. Genomewide association study of severe Covid-19 with respiratory failure // N Engl J Med. 2020. Vol. 383, N 16. P. 1522–1534. doi: 10.1056/NEJMoa2020283

[17]

Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–98. doi: 10.1038/s41586-020-03065-y

[18]

The GenOMICC Investigators et al. Genetic mechanisms of critical illness in COVID-19 // Nature. 2021. Vol. 591, N 7848. P. 92–98. doi: 10.1038/s41586-020-03065-y

[19]

Kousathanas A, Pairo-Castineira E, Rawlik K, et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature. 2022;607(7917):97–103. doi: 10.1038/s41586-022-04576-6

[20]

Kousathanas A., Pairo-Castineira E., Rawlik K., et al. Whole-genome sequencing reveals host factors underlying critical COVID-19 // Nature. 2022. Vol. 607, N 7917. P. 97–103. doi: 10.1038/s41586-022-04576-6

[21]

Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–484. doi: 10.1038/s41576-019-0127-1

[22]

Tam V., Patel N., Turcotte M., et al. Benefits and limitations of genome-wide association studies // Nat Rev Genet. 2019. Vol. 20, N 8. P. 467–484. doi: 10.1038/s41576-019-0127-1

[23]

Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590(7845):290–299. doi: 10.1038/s41586-021-03205-y

[24]

Taliun D., Harris D.N., Kessler M.D., et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program // Nature. 2021. Vol. 590, N 7845. P. 290–299. doi: 10.1038/s41586-021-03205-y

[25]

Niemi MEK, Daly MJ, Ganna A. The human genetic epidemiology of COVID-19. Nat Rev Genet. 2022;23(9):533–546. doi: 10.1038/s41576-022-00478-5

[26]

Niemi M.E.K., Daly M.J., Ganna A. The human genetic epidemiology of COVID-19 // Nat Rev Genet. 2022. Vol. 23, N 9. P. 533–546. doi: 10.1038/s41576-022-00478-5

[27]

Redin C, Thorball CW, Fellay J. Host genomics of SARS-CoV-2 infection. Eur J Hum Genet. 2022;30(8):908–914. doi: 10.1038/s41431-022-01136-4

[28]

Redin C., Thorball C.W., Fellay J. Host genomics of SARS-CoV-2 infection // Eur J Hum Genet. 2022. Vol. 30, N 8. P. 908–914. doi: 10.1038/s41431-022-01136-4

[29]

Howe KL, Achuthan P, Allen J, et al. Ensembl 2021. Nucleic Acids Res. 2021;49(D1):D884–D891. doi: 10.1093/nar/gkaa942

[30]

Howe K.L., Achuthan P., Allen J., et al. Ensembl 2021 // Nucleic Acids Res. 2021. Vol. 49, N D1. P. D884–D891. doi: 10.1093/nar/gkaa942

[31]

Beazley DM. Python essential reference. 3rd ed. Developer’s library; 2006. 625 p.

[32]

Beazley D.M. Python essential reference. 3rd ed. Developer’s library, 2006. 625 p.

[33]

Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. Corrected and republished from: Nature. 2021;590(7846):E53. doi: 10.1038/s41586-020-2308-7

[34]

Karczewski K.J., Francioli L.C., Tiao G., et al. The mutational constraint spectrum quantified from variation in 141,456 humans // Nature. 2020. Vol. 581, N 7809. P. 434–443. Corrected and republished from: Nature. Vol. 590, N 7846. P. E53. doi: 10.1038/s41586-020-2308-7

[35]

Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi: 10.1126/science.abd4570

[36]

Zhang Q., Bastard P., Liu Z., et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19 // Science. 2020. Vol. 370, N 6515. P. eabd4570. doi: 10.1126/science.abd4570

[37]

Zhang Q, Bastard P, COVID Human Genetic Effort; et al. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature. 2022;603(7902):587–598. doi: 10.1038/s41586-022-04447-0

[38]

Zhang Q., Bastard P., COVID Human Genetic Effort; et al. Human genetic and immunological determinants of critical COVID-19 pneumonia // Nature. 2022. Vol. 603, N 7902. P. 587–598. doi: 10.1038/s41586-022-04447-0

[39]

Bastard P, Orlova E, Sozaeva L, et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J Exp Med. 2021;218(7):e20210554. doi: 10.1084/jem.20210554

[40]

Bastard P., Orlova E., Sozaeva L., et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1 // J Exp Med. 2021. Vol. 218, N 7. P. e20210554. doi: 10.1084/jem.20210554

[41]

Shelton JF, Shastri AJ, Ye C, et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat Genet. 2021;53(6):801–808. doi: 10.1038/s41588-021-00854-7

[42]

Shelton J.F., Shastri A.J., Ye C., et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity // Nat Genet. 2021. Vol. 53, N 6. P. 801–808. doi: 10.1038/s41588-021-00854-7

[43]

Carracedo Á, Spanish COalition to Unlock Research on host GEnetics on COVID-19 (SCOURGE). A genome-wide association study of COVID-19 related hospitalization in Spain reveals genetic disparities among sexes. medRxiv. 2021. doi: 10.1101/2021.11.24.21266741

[44]

Carracedo Á., Spanish COalition to Unlock Research on host GEnetics on COVID-19 (SCOURGE). A genome-wide association study of COVID-19 related hospitalization in Spain reveals genetic disparities among sexes // medRxiv. 2021. doi: 10.1101/2021.11.24.21266741

[45]

Roberts GHL, Park DS, Coignet MV, et al. AncestryDNA COVID-19 host genetic study identifies three novel loci. medRxiv. 2020. doi: 10.1101/2020.10.06.20205864

[46]

Roberts G.H.L., Park D.S., Coignet M.V., et al. AncestryDNA COVID-19 host genetic study identifies three novel loci // medRxiv. 2020. doi: 10.1101/2020.10.06.20205864

[47]

Horowitz JE, Kosmicki JA, Damask A, et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet. 2022;54(4):382–392. doi: 10.1038/s41588-021-01006-7

[48]

Horowitz J.E., Kosmicki J.A., Damask A., et al. Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease // Nat Genet. 2022. Vol. 54, N 4. P. 382–392. doi: 10.1038/s41588-021-01006-7

[49]

Huffman JE, Butler-Laporte G, Khan A, et al. Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19. Nat Genet. 2022;54(2):125–127. doi: 10.1038/s41588-021-00996-8

[50]

Huffman J.E., Butler-Laporte G., Khan A., et al. Multi-ancestry fine mapping implicates OAS1 splicing in risk of severe COVID-19 // Nat Genet. 2022. Vol. 54, N 2. P. 125–127. doi: 10.1038/s41588-021-00996-8

[51]

Mutambudzi M, Niedzwiedz C, Macdonald EB, et al. Occupation and risk of severe COVID-19: prospective cohort study of 120 075 UK Biobank participants. Occup Environ Med. Corrected and republished from: Occup Environ Med. 2022;79(2):e3. doi: 10.1136/oemed-2020-106731

[52]

Mutambudzi M., Niedwiedz C., Macdonald E.B., et al. Occupation and risk of severe COVID-19: prospective cohort study of 120 075 UK Biobank participants // Occup Environ Med. 2020. Corrected and republished from: Occup Environ Med. 2022. Vol. 79, N 2. P. e3. doi: 10.1136/oemed-2020-106731

[53]

Butler-Laporte G, Povysil G, Kosmicki JA, et al. Exome-wide association study to identify rare variants influencing COVID-19 outcomes: results from the Host Genetics Initiative. PLoS Genet. 2022;18(11):e1010367. doi: 10.1371/journal.pgen.1010367

[54]

Butler-Laporte G., Povysil G., Kosmicki J.A., et al. Exome-wide association study to identify rare variants influencing COVID-19 outcomes: results from the Host Genetics Initiative // PLoS Genet. 2022. Vol. 18, N 11. P. e1010367. doi: 10.1371/journal.pgen.1010367

[55]

Casanova JL. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci USA. 2015;112(51):E7128–E7137. doi: 10.1073/pnas.1521651112

[56]

Casanova J.L. Severe infectious diseases of childhood as monogenic inborn errors of immunity // Proc Natl Acad Sci U S A. 2015. Vol. 112, N 51. P. E7128–E7137. doi: 10.1073/pnas.1521651112

[57]

Lim HK, Huang SXL, Chen J, et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. 2019;216(9):2038–2056. doi: 10.1084/jem.20181621

[58]

Lim H.K., Huang S.X.L., Chen J., et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency // J Exp Med. 2019. Vol. 216, N 9. P. 2038–2056. doi: 10.1084/jem.20181621

[59]

D’Alessandro A, Thomas T, Akpan IJ, et al. Biological and clinical factors contributing to the metabolic heterogeneity of hospitalized patients with and without COVID-19. Cells. 2021;10(9):2293. doi: 10.3390/cells10092293

[60]

D’Alessandro A., Thomas T., Akpan I.J., et al. Biological and clinical factors contributing to the metabolic heterogeneity of hospitalized patients with and without COVID-19 // Cells. 2021. Vol. 10, N 9. P. 2293. doi: 10.3390/cells10092293

[61]

Downes DJ, Cross AR, Hua P, et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus. Nat Genet. 2021;53(11):1606–1615. doi: 10.1038/s41588-021-00955-3

[62]

Downes D.J., Cross A.R., Hua P., et al. Identification of LZTFL1 as a candidate effector gene at a COVID-19 risk locus // Nat Genet. 2021. Vol. 53, N 11. P. 1606–1615. doi: 10.1038/s41588-021-00955-3

[63]

Stewart CA, Gay CM, Ramkumar K, et al. Lung cancer models reveal severe acute respiratory syndrome coronavirus 2–induced epithelial-to-mesenchymal transition contributes to coronavirus disease 2019 pathophysiology. J Thorac Oncol. 2021;16(11):1821–1839. doi: 10.1016/j.jtho.2021.07.002

[64]

Stewart C.A., Gay C.M., Ramkumar K., et al. Lung cancer models reveal severe acute respiratory syndrome coronavirus 2–induced epithelial-to-mesenchymal transition contributes to coronavirus disease 2019 pathophysiology // J Thorac Oncol. 2021. Vol. 16, N 11. P. 1821–1839. doi: 10.1016/j.jtho.2021.07.002

[65]

Akbari M, Akhavan-Bahabadi M, Shafigh N, et al. Expression analysis of IFNAR1 and TYK2 transcripts in COVID-19 patients. Cytokine. 2022;153:155849. doi: 10.1016/j.cyto.2022.155849

[66]

Akbari M., Akhavan-Bahabadi M., Shafigh N., et al. Expression analysis of IFNAR1 and TYK2 transcripts in COVID-19 patients // Cytokine. 2022. Vol. 153. P. 155849. doi: 10.1016/j.cyto.2022.155849

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/