Virus-mediated neuron-specific retrograde gene delivery in spinal cord injury

Yuri A. Chelyshev , Yana O. Mukhamedshina

Genes & Cells ›› 2024, Vol. 19 ›› Issue (2) : 231 -244.

PDF
Genes & Cells ›› 2024, Vol. 19 ›› Issue (2) : 231 -244. DOI: 10.17816/gc624407
Reviews
review-article

Virus-mediated neuron-specific retrograde gene delivery in spinal cord injury

Author information +
History +
PDF

Abstract

To support neuronal function and restoration, virus-mediated neuron-specific retrograde transport is an effective tool for determining the localization of neuronal somas, identifying interneuronal connections, and facilitating the retrograde delivery of therapeutic transgenes. In experimental spinal cord injury, the retrograde transport of therapeutic transgenes offers several advantages over other more common delivery methods, such as targeted transfer of genetic constructs to specific types of spinal neuron somas, low invasiveness, relatively low risk of inflammatory response, and potential for repeated injections. Research on retrograde transport has extensively focused on enhancing its efficiency through capsid modification and application of novel promoters.

This review presents a detailed examination of the outcomes of virus-mediated neuron-specific retrograde transduction of transgenes after intramuscular injection of genetic constructs. In retrograde delivery technology, the ability to choose between monosynaptic and polysynaptic transports, depending on the specific viral vector used, was a positive aspect. The review also addresses the effects of virus-mediated retrograde transduction on both spinal motoneurons and interneurons, which collectively form motor neuronal networks. By delivering transgenes through retrograde transport along axons from the periphery to the perikarya of spinal neurons, not only localized effects within the spinal cord but also in supraspinal structures can be anticipated, a crucial aspect in restoring extensive neural connections.

Keywords

spinal cord injury / motoneuron / retrograde delivery / recombinant genes / viral vector

Cite this article

Download citation ▾
Yuri A. Chelyshev, Yana O. Mukhamedshina. Virus-mediated neuron-specific retrograde gene delivery in spinal cord injury. Genes & Cells, 2024, 19(2): 231-244 DOI:10.17816/gc624407

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Romero MI, Rangappa N, Li L, et al. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord. J Neurosci. 2000;20(12):4435–4445. Corrected and republished from: J Neurosci. 2000;20(22):1b. doi: 10.1523/JNEUROSCI.20-12-04435.2000

[2]

Romero M.I., Rangappa N., Li L., et al. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord // J Neurosci. 2000. Vol. 20, N 12. P. 4435–4445. Corrected and republished from: J Neurosci 2000. Vol. 20. P. 1b. doi: 10.1523/JNEUROSCI.20-12-04435.2000

[3]

Nakajima H, Uchida K, Kobayashi S, et al. Targeted retrograde gene delivery into the injured cervical spinal cord using recombinant adenovirus vector. Neurosci Lett. 2005;385(1):30–35. doi: 10.1016/j.neulet.2005.05.012

[4]

Nakajima H., Uchida K., Kobayashi S., et al. Targeted retrograde gene delivery into the injured cervical spinal cord using recombinant adenovirus vector // Neurosci Lett. 2005. Vol. 385, N 1. P. 30–35. doi: 10.1016/j.neulet.2005.05.012

[5]

Shaari CM, Sanders I. Quantifying how location and dose of botulinum toxin injections affect muscle paralysis. Muscle Nerve. 1993;16(9):964–969. doi: 10.1002/mus.880160913

[6]

Shaari C.M., Sanders I. Quantifying how location and dose of botulinum toxin injections affect muscle paralysis // Muscle Nerve. 1993. Vol. 16, N 9. P. 964–969. doi: 10.1002/mus.880160913

[7]

Chin TYP, Nattrass GR, Selber P, Graham HK. Accuracy of intramuscular injection of botulinum toxin A in juvenile cerebral palsy: a comparison between manual needle placement and placement guided by electrical stimulation. J Pediatr Orthop. 2005;25(3):286–291. doi: 10.1097/01.bpo.0000150819.72608.86

[8]

Chin T.Y.P., Nattrass G.R., Selber P., Graham H.K. Accuracy of intramuscular injection of botulinum toxin A in juvenile cerebral palsy: a comparison between manual needle placement and placement guided by electrical stimulation // J Pediatr Orthop. 2005. Vol. 25, N 3. P. 286–291. doi: 10.1097/01.bpo.0000150819.72608.86

[9]

Tosolini AP, Mohan R, Morris R. Targeting the full length of the motor end plate regions in the mouse forelimb increases the uptake of Fluoro-Gold into corresponding spinal cord motor neurons. Front Neurol. 2013;4:58. doi: 10.3389/fneur.2013.00058

[10]

Tosolini A.P., Mohan R., Morris R. Targeting the full length of the motor end plate regions in the mouse forelimb increases the uptake of Fluoro-Gold into corresponding spinal cord motor neurons // Front Neurol. 2013. Vol. 4. P. 58. doi: 10.3389/fneur.2013.00058

[11]

Tosolini AP, Morris R. Viral-mediated gene therapy for spinal cord injury (SCI) from a translational neuroanatomical perspective. Neural Regen Res. 2016;11(5):743–744. doi: 10.4103/1673-5374.182698

[12]

Tosolini A.P., Morris R. Viral-mediated gene therapy for spinal cord injury (SCI) from a translational neuroanatomical perspective // Neural Regen Res. 2016. Vol. 11, N 5. P. 743–744. doi: 10.4103/1673-5374.182698

[13]

Tosolini AP, Morris R. Spatial characterization of the motor neuron columns supplying the rat forelimb. Neuroscience. 2012;200:19–30. doi: 10.1016/j.neuroscience.2011.10.054

[14]

Tosolini A.P., Morris R. Spatial characterization of the motor neuron columns supplying the rat forelimb // Neuroscience. 2012. Vol. 200. P. 19–30. doi: 10.1016/j.neuroscience.2011.10.054

[15]

Mohan R, Tosolini AP, Morris R. Targeting the motor end plates in the mouse hindlimb gives access to a greater number of spinal cord motor neurons: an approach to maximize retrograde transport. Neuroscience. 2014;274:318–330. doi: 10.1016/j.neuroscience.2014.05.045

[16]

Mohan R., Tosolini A.P., Morris R. Targeting the motor end plates in the mouse hindlimb gives access to a greater number of spinal cord motor neurons: an approach to maximize retrograde transport // Neuroscience. 2014. Vol. 274. P. 318–330. doi: 10.1016/j.neuroscience.2014.05.045

[17]

Mohan R, Tosolini AP, Morris R. Intramuscular injections along the motor end plates: a minimally invasive approach to shuttle tracers directly into motor neurons. J Vis Exp. 2015;(101):e52846. doi: 10.3791/52846

[18]

Mohan R., Tosolini A.P., Morris R. Intramuscular injections along the motor end plates: a minimally invasive approach to shuttle tracers directly into motor neurons // J Vis Exp. 2015. Vol. 101. P. 52846. doi: 10.3791/52846

[19]

Yin X, Yu T, Chen B, et al. Spatial distribution of motor endplates and its adaptive change in skeletal muscle. Theranostics. 2019;9(3):734–746. doi: 10.7150/thno.28729

[20]

Yin X., Yu T., Chen B., et al. Spatial distribution of motor endplates and its adaptive change in skeletal muscle // Theranostics. 2019. Vol. 9, N 3. P. 734–746. doi: 10.7150/thno.28729

[21]

Xu J, Xuan A, Liu Z, et al. An Approach to maximize retrograde transport based on the spatial distribution of motor endplates in mouse hindlimb muscles. Front Cell Neurosci. 2021;15:707982. doi: 10.3389/fncel.2021.707982

[22]

Xu J., Xuan A., Liu Z., et al. An approach to maximize retrograde transport based on the spatial distribution of motor endplates in mouse hindlimb muscles // Front Cell Neurosci. 2021. Vol. 15. P. 707982. doi: 10.3389/fncel.2021.707982

[23]

Martinov VN, Sefland I, Walaas IS, et al. Targeting functional subtypes of spinal motoneurons and skeletal muscle fibers in vivo by intramuscular injection of adenoviral and adeno-associated viral vectors. Anat Embryol (Berl). 2002;205(3):215–221. doi: 10.1007/s00429-002-0233-1

[24]

Martinov V.N., Sefland I., Walaas S.I., et al. Targeting functional subtypes of spinal motoneurons and skeletal muscle fibers in vivo by intramuscular injection of adenoviral and adeno-associated viral vectors // Anat Embryol (Berl). 2002. Vol. 205, N 3. P. 215–221. doi: 10.1007/s00429-002-0233-1

[25]

Chen Z, Fan G, Li A, et al. rAAV2-Retro enables extensive and high-efficient transduction of lower motor neurons following intramuscular injection. Mol Ther Methods Clin Dev. 2020;17:21–33. doi: 10.1016/j.omtm.2019.11.006

[26]

Chen Z., Fan G., Li A., et al. rAAV2-Retro enables extensive and high-efficient transduction of lower motor neurons following intramuscular injection // Mol Ther Methods Clin Dev. 2019. Vol. 17. P. 21–33. doi: 10.1016/j.omtm.2019.11.006

[27]

Towne C, Schneider BL, Kieran D, et al. Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther. 2010;17(1):141–146. doi: 10.1038/gt.2009.119

[28]

Towne C., Schneider B.L., Kieran D., et al. Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6 // Gene Ther. 2010. Vol. 17, N 1. P. 141–146. doi: 10.1038/gt.2009.119

[29]

Rose JK, Doolittle RF, Anilionis A, et al. Homology between the glycoproteins of vesicular stomatitis virus and rabies virus. J Virol. 1982;43(1):361–364. doi: 10.1128/JVI.43.1.361–364.1982

[30]

Rose J.K., Doolittle R.F., Anilionis A., et al. Homology between the glycoproteins of vesicular stomatitis virus and rabies virus // J Virol. 1982. Vol. 43, N 1. P. 361–364. doi: 10.1128/JVI.43.1.361-364.1982

[31]

Desmaris N, Bosch A, Salaün C, et al. Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther. 2001;4(2):149–156. doi: 10.1006/mthe.2001.0431

[32]

Desmaris N., Bosch A., Salaün C., et al. Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins // Mol Ther. 2001. Vol. 4, N 2. P. 149–156. doi: 10.1006/mthe.2001.0431

[33]

Hirano M, Kato S, Kobayashi K, et al. Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein. PLoS One. 2013;8(9):e75896. doi: 10.1371/journal.pone.0075896

[34]

Hirano M., Kato S., Kobayashi K., et al. Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein // PLoS One. 2013. Vol. 8, N 9. P. 75896. doi: 10.1371/journal.pone.0075896

[35]

Humbel M, Ramosaj M, Zimmer V, et al. Maximizing lentiviral vector gene transfer in the CNS. Gene Ther. 2021;28(1-2):75–88. Corrected and republished from: Gene Ther. 2022;29(5):312. doi: 10.1038/s41434-020-0172-6

[36]

Humbel M., Ramosaj M., Zimmer V., et al. Maximizing lentiviral vector gene transfer in the CNS // Gene Ther. 2021. Vol. 28(1-2). P. 75–88. Corrected and republished from: Gene Ther. 2022. Vol. 29. P. 312. doi: 10.1038/s41434-020-0172-6

[37]

Reardon TR, Murray AJ, Turi GF, et al. Rabies virus CVS-N2cΔG strain enhances retrograde synaptic transfer and neuronal viability. Neuron. 2016;89(4):711–724. doi: 10.1016/j.neuron.2016.01.004

[38]

Reardon T.R., Murray A.J., Turi G.F., et al. Rabies virus CVS-N2cΔG strain enhances retrograde synaptic transfer and neuronal viability // Neuron. 2016. Vol. 89, N 4. P. 711–724. doi: 10.1016/j.neuron.2016.01.004

[39]

Sydney-Smith JD, Spejo AB, Warren PM, Moon LDF. Peripherally delivered adeno-associated viral vectors for spinal cord injury repair. Exp Neurol. 2022;348:113945. doi: 10.1016/j.expneurol.2021.113945

[40]

Sydney-Smith J.D., Spejo A.B., Warren P.M., Moon L.D.F. Peripherally delivered adeno-associated viral vectors for spinal cord injury repair // Exp Neurol. 2022. Vol. 348. P. 113945. doi: 10.1016/j.expneurol.2021.113945

[41]

Nonnenmacher M, Wang W, Child MA, et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol Ther Methods Clin Dev. 2020;20:366–378. doi: 10.1016/j.omtm.2020.12.006

[42]

Nonnenmacher M., Wang W., Child M.A., et al. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning // Mol Ther Methods Clin Dev. 2020. Vol. 20. P. 366–378. doi: 10.1016/j.omtm.2020.12.006

[43]

Tervo DGR, Hwang BY, Viswanathan S, et al. A Designer AAV variant permits efficient retrograde access to projection neurons. Neuron. 2016;92(2):372–382. doi: 10.1016/j.neuron.2016.09.021

[44]

Tervo D.G.R., Hwang B.Y., Viswanathan S., et al. A designer AAV variant permits efficient retrograde access to projection neurons // Neuron. 2016. Vol. 92, N 2. P. 372–382. doi: 10.1016/j.neuron.2016.09.021

[45]

Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204–209. doi: 10.1038/nbt.3440

[46]

Deverman B.E., Pravdo P.L., Simpson B.P., et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain // Nat Biotechnol. 2016. Vol. 34, N 2. P. 204–209. doi: 10.1038/nbt.3440

[47]

Davidsson M, Wang G, Aldrin-Kirk P, et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proc Natl Acad Sci U S A. 2019;116(52):27053–27062. doi: 10.1073/pnas.1910061116

[48]

Davidsson M., Wang G., Aldrin-Kirk P., et al. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism // Proc Natl Acad Sci U S A. 2019. Vol. 116, N 52. P. 27053–27062. doi: 10.1073/pnas.1910061116

[49]

Chan KY, Jang MJ, Yoo BB, et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci. 2017;20(8):1172–1179. doi: 10.1038/nn.4593

[50]

Chan K.Y., Jang M.J., Yoo B.B., et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems // Nat Neurosci. 2017. Vol. 20, N 8. P. 1172–1179. doi: 10.1038/nn.4593

[51]

Hordeaux J, Wang Q, Katz N, et al. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol Ther. 2018;26(3):664–668. doi: 10.1016/j.ymthe.2018.01.018

[52]

Hordeaux J., Wang Q., Katz N., et al. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice // Mol Ther. 2018. Vol. 26, N 3. P. 664–668. doi: 10.1016/j.ymthe.2018.01.018

[53]

Matsuzaki Y, Konno A, Mochizuki R, et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci Lett. 2018;665:182–188. doi: 10.1016/j.neulet.2017.11.049

[54]

Matsuzaki Y., Konno A., Mochizuki R., et al. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain // Neurosci Lett. 2018. Vol. 665. P. 182–188. doi: 10.1016/j.neulet.2017.11.049

[55]

Mathiesen SN, Lock JL, Schoderboeck L, et al. CNS transduction benefits of AAV-PHP.eB over AAV9 are dependent on administration route and mouse strain. Mol Ther Methods Clin Dev. 2020;19:447–458. doi: 10.1016/j.omtm.2020.10.011

[56]

Mathiesen S.N., Lock J.L., Schoderboeck L., et al. CNS transduction benefits of AAV-PHP.eB over AAV9 are dependent on administration route and mouse strain // Mol Ther Methods Clin Dev. 2020. Vol. 19. P. 447–458. doi: 10.1016/j.omtm.2020.10.011

[57]

Chen B, Li Y, Yu B, et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell. 2018;174(6):1599. doi: 10.1016/j.cell.2018.08.050

[58]

Chen B., Li Y., Yu B., et al. Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations // Cell. 2018. Vol. 174, N 6. P. 1599. doi: 10.1016/j.cell.2018.08.050

[59]

Rincon MY, De Vin F, Duqué SI, et al. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector. Gene Ther. 2018;25(2):83–92. doi: 10.1038/s41434-018-0005-z

[60]

Rincon M.Y., De Vin F., Duqué S.I., et al. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector // Gene Ther. 2018. Vol. 25, N 2. P. 83–92. doi: 10.1038/s41434-018-0005-z

[61]

Radhiyanti PT, Konno A, Matsuzaki Y, Hirai H. Comparative study of neuron-specific promoters in mouse brain transduced by intravenously administered AAV-PHP.eB. Neurosci Lett. 2021;756:135956. doi: 10.1016/j.neulet.2021.135956

[62]

Radhiyanti P.T., Konno A., Matsuzaki Y., Hirai H. Comparative study of neuron-specific promoters in mouse brain transduced by intravenously administered AAV-PHP.eB // Neurosci Lett. 2021. Vol. 756. P. 135956. doi: 10.1016/j.neulet.2021.135956

[63]

Han Z, Luo N, Ma W, et al. AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction. Nat Commun. 2023;14(1):3792. doi: 10.1038/s41467-023-39554-7

[64]

Han Z., Luo N., Ma W., et al. AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction // Nat Commun. 2023. Vol. 14, N 1. P. 3792. doi: 10.1038/s41467-023-39554-7

[65]

Graybuck LT, Daigle TL, Sedeño-Cortés AE, et al. Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron. 2021;109(9):1449–1464.e13. doi: 10.1016/j.neuron.2021.03.011

[66]

Graybuck L.T., Daigle T.L., Sedeño-Cortés A.E., et al. Enhancer viruses for combinatorial cell-subclass-specific labeling // Neuron. 2021. Vol. 109, N 9. P. 1449–1464. doi: 10.1016/j.neuron.2021.03.011

[67]

Mich JK, Graybuck LT, Hess EE, et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 2021;34(13):108754. doi: 10.1016/j.celrep.2021.108754

[68]

Mich J.K., Graybuck L.T., Hess E.E., et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex // Cell Rep. 2021. Vol. 34, N 13. P. 108754. doi: 10.1016/j.celrep.2021.108754

[69]

O’Carroll SJ, Cook WH, Young D. AAV targeting of glial cell types in the central and peripheral nervous system and relevance to human gene therapy. Front Mol Neurosci. 2021;13:618020. doi: 10.3389/fnmol.2020.618020

[70]

O’Carroll S.J., Cook W.H., Young D. AAV targeting of glial cell types in the central and peripheral nervous system and relevance to human gene therapy // Front Mol Neurosci. 2021. Vol. 13. P. 618020. doi: 10.3389/fnmol.2020.618020

[71]

Baumgartner BJ, Shine HD. Neuroprotection of spinal motoneurons following targeted transduction with an adenoviral vector carrying the gene for glial cell line-derived neurotrophic factor. Exp Neurol. 1998;153(1):102–112. doi: 10.1006/exnr.1998.6878

[72]

Baumgartner B.J., Shine H.D. Neuroprotection of spinal motoneurons following targeted transduction with an adenoviral vector carrying the gene for glial cell line-derived neurotrophic factor // Exp Neurol. 1998. Vol. 153, N 1. P. 102–112. doi: 10.1006/exnr.1998.6878

[73]

Zhou L, Baumgartner BJ, Hill-Felberg SJ, et al. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci. 2003;23(4):1424–1431. doi: 10.1523/jneurosci.23-04-01424.2003

[74]

Zhou L., Baumgartner B.J., Hill-Felberg S.J., et al. Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord // J Neurosci. 2003. Vol. 23, N 4. P. 1424–1431. doi: 10.1523/JNEUROSCI.23-04-01424.2003

[75]

Zhou L, Shine HD. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. J Neurosci Res. 2003;74(2):221–226. doi: 10.1002/jnr.10718

[76]

Zhou L., Shine H.D. Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury // J Neurosci Res. 2003. Vol. 74, N 2. P. 221–226. doi: 10.1002/jnr.10718

[77]

Nakajima H, Uchida K, Kobayashi S, et al. Rescue of rat anterior horn neurons after spinal cord injury by retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene. J Neurotrauma. 2007;24(4):703–712. doi: 10.1089/neu.2006.0004

[78]

Nakajima H., Uchida K., Kobayashi S., et al. Rescue of rat anterior horn neurons after spinal cord injury by retrograde transfection of adenovirus vector carrying brain-derived neurotrophic factor gene // J Neurotrauma. 2007. Vol. 24, N 4. P. 703–712. doi: 10.1089/neu.2006.0004

[79]

Uchida K, Nakajima H, Inukai T, et al. Adenovirus-mediated retrograde transfer of neurotrophin-3 gene enhances survival of anterior horn neurons of twy/twy mice with chronic mechanical compression of the spinal cord. J Neurosci Res. 2008;86(8):1789–1800. doi: 10.1002/jnr.21627

[80]

Uchida K., Nakajima H., Inukai T., et al. Adenovirus-mediated retrograde transfer of neurotrophin-3 gene enhances survival of anterior horn neurons of twy/twy mice with chronic mechanical compression of the spinal cord // J Neurosci Res. 2008. Vol. 86, N 8. P. 1789–1800. doi: 10.1002/jnr.21627

[81]

Fortun J, Puzis R, Pearse DD, et al. Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI. J Neurotrauma. 2009;26(7):941–953. doi: 10.1089/neu.2008.0807

[82]

Fortun J., Puzis R., Pearse D.D., et al. Muscle injection of AAV-NT3 promotes anatomical reorganization of CST axons and improves behavioral outcome following SCI // J Neurotrauma. 2009. Vol. 26, N 7. P. 941–953. doi: 10.1089/neu.2008.0807

[83]

Petruska JC, Kitay B, Boyce VS, et al. Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats. Eur J Neurosci. 2010;32(6):997–1005. doi: 10.1111/j.1460-9568.2010.07392.x

[84]

Petruska J.C., Kitay B., Boyce V.S., et al. Intramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult rats // Eur J Neurosci. 2010. Vol. 32, N 6. P. 997–1005. doi: 10.1111/j.1460-9568.2010.07392.x

[85]

Uchida K, Nakajima H, Hirai T, et al. The retrograde delivery of adenovirus vector carrying the gene for brain-derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice. Spine (Phila Pa 1976). 2012;37(26):2125–2135. doi: 10.1097/BRS.0b013e3182600ef7

[86]

Uchida K., Nakajima H., Hirai T., et al. The retrograde delivery of adenovirus vector carrying the gene for brain-derived neurotrophic factor protects neurons and oligodendrocytes from apoptosis in the chronically compressed spinal cord of twy/twy mice // Spine (Phila Pa 1976). 2012. Vol. 37, N 26. P. 2125–2135. doi: 10.1097/BRS.0b013e3182600ef7

[87]

Kathe C, Hutson TH, McMahon SB, Moon LDF. Intramuscular neurotrophin-3 normalizes low threshold spinal reflexes, reduces spasms and improves mobility after bilateral corticospinal tract injury in rats. Elife. 2016;5:e18146. doi: 10.7554/eLife.18146

[88]

Kathe C., Hutson T.H., McMahon S.B., Moon L.D. Intramuscular neurotrophin-3 normalizes low threshold spinal reflexes, reduces spasms and improves mobility after bilateral corticospinal tract injury in rats // Elife. 2016. Vol. 5. P. 18146. doi: 10.7554/eLife.18146

[89]

Chang YX, Zhao Y, Pan S, et al. Intramuscular injection of adenoassociated virus encoding human neurotrophic factor 3 and exercise intervention contribute to reduce spasms after spinal cord injury. Neural Plast. 2019;2019. doi: 10.1155/2019/3017678

[90]

Chang Y.X., Zhao Y., Pan S., et al. Intramuscular injection of adenoassociated virus encoding human neurotrophic factor 3 and exercise intervention contribute to reduce spasms after spinal cord injury // Neural Plast. 2019. Vol. 2019. P. 3017678. doi: 10.1155/2019/3017678

[91]

Stewart AN, Kumari R, Bailey WM, et al. PTEN knockout using retrogradely transported AAVs transiently restores locomotor abilities in both acute and chronic spinal cord injury. Exp Neurol. 2023;368:114502. doi: 10.1016/j.expneurol.2023.114502

[92]

Stewart A.N., Kumari R., Bailey W.M., et al. PTEN knockout using retrogradely transported AAVs transiently restores locomotor abilities in both acute and chronic spinal cord injury // Exp Neurol. 2023. Vol. 368, P. 114502. doi: 10.1016/j.expneurol.2023.114502

[93]

Liabeuf S, Stuhl-Gourmand L, Gackière F, et al. Prochlorperazine increases KCC2 function and reduces spasticity after spinal cord injury. J Neurotrauma. 2017;34(24):3397–3406. doi: 10.1089/neu.2017.5152

[94]

Liabeuf S., Stuhl-Gourmand L., Gackière F., et al. Prochlorperazine increases KCC2 function and reduces spasticity after spinal cord injury // J Neurotrauma. 2017. Vol. 34, N 24. P. 3397–3406. doi: 10.1089/neu.2017.5152

[95]

Filli L, Schwab ME. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regen Res. 2015;10(4):509–513. doi: 10.4103/1673-5374.155425

[96]

Filli L., Schwab M.E. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury // Neural Regen Res. 2015. Vol. 10, N 4. P. 509–513. doi: 10.4103/1673-5374.155425

[97]

Swieck K, Conta-Steencken A, Middleton FA, et al. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury. BMC Neurosci. 2019;20(1):10. doi: 10.1186/s12868-019-0491-y

[98]

Swieck K., Conta-Steencken A., Middleton F.A., et al. Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury // BMC Neurosci. 2019. Vol. 20, N 1. P. 10. doi: 10.1186/s12868-019-0491-y

[99]

Brommer B, He M, Zhang Z, et al. Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury. Nat Commun. 2021;12(1):781. doi: 10.1038/s41467-021-20980-4

[100]

Brommer B., He M., Zhang Z., et al. Improving hindlimb locomotor function by non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury // Nat Commun. 2021. Vol. 12, N 1. P. 781. doi: 10.1038/s41467-021-20980-4

[101]

Hayashi M, Hinckley CA, Driscoll SP, et al. Graded arrays of spinal and supraspinal V2a interneuron subtypes underlie forelimb and hindlimb motor control. Neuron. 2018;97(4):869–884.e5. doi: 10.1016/j.neuron.2018.01.023

[102]

Hayashi M., Hinckley C.A., Driscoll S.P., et al. Graded arrays of spinal and supraspinal V2a interneuron subtypes underlie forelimb and hindlimb motor control // Neuron. 2018. Vol. 97, N 4. P. 869–884. doi: 10.1016/j.neuron.2018.01.023

[103]

Zholudeva LV, Karliner JS, Dougherty KJ, Lane MA. Anatomical recruitment of spinal V2a interneurons into phrenic motor circuitry after high cervical spinal cord injury. J Neurotrauma. 2017;34(21):3058–3065. doi: 10.1089/neu.2017.5045

[104]

Zholudeva L.V., Karliner J.S., Dougherty K.J., et al. Anatomical recruitment of spinal V2a interneurons into phrenic motor circuitry after high cervical spinal cord injury // J Neurotrauma. 2017. Vol. 34, N 21. P. 3058–3065. doi: 10.1089/neu.2017.5045

[105]

Li WY, Deng LX, Zhai FG, et al. Chx10+V2a interneurons in spinal motor regulation and spinal cord injur. Neural Regen Res. 2023;18(5):933–939. doi: 10.4103/1673-5374.355746

[106]

Li W.Y., Deng L.X., Zhai F.G., et al. Chx10+V2a interneurons in spinal motor regulation and spinal cord injur // Neural Regen Res. 2023. Vol. 18, N 5. P. 933–939. doi: 10.4103/1673-5374.355746

[107]

Laliberte AM, Goltash S, Lalonde NR, Bui TV. Propriospinal neurons: essential elements of locomotor control in the intact and possibly the injured spinal cord. Front Cell Neurosci. 2019;13:512. doi: 10.3389/fncel.2019.00512

[108]

Laliberte A.M., Goltash S., Lalonde N.R., et al. Propriospinal neurons: essential elements of locomotor control in the intact and possibly the injured spinal cord // Front Cell Neurosci. 2019. Vol. 13. P. 512. doi: 10.3389/fncel.2019.00512

[109]

Han Q, Ordaz JD, Liu NK, et al. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice. Nat Commun. 2019;10(1):5815. doi: 10.1038/s41467-019-13854-3

[110]

Han Q., Ordaz J.D., Liu N.K., et al. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice // Nat Commun. 2019. Vol. 10, N 1. P. 5815. doi: 10.1038/s41467-019-13854-3

[111]

Bradley PM, Denecke CK, Aljovic A, et al. Corticospinal circuit remodeling after central nervous system injury is dependent on neuronal activity. J Exp Med. 2019;216(11):2503–2514. doi: 10.1084/jem.20181406

[112]

Bradley P.M., Denecke C.K., Aljovic A., et al. Corticospinal circuit remodeling after central nervous system injury is dependent on neuronal activity // J Exp Med. 2019. Vol. 216, N 11. P. 2503–2514. doi: 10.1084/jem.20181406

[113]

Engmann AK, Bizzozzero F, Schneider MP, et al. The gigantocellular reticular nucleus plays a significant role in locomotor recovery after incomplete spinal cord injury. J Neurosci. 2020;40(43):8292–8305. doi: 10.1523/JNEUROSCI.0474-20.2020

[114]

Engmann A.K., Bizzozzero F., Schneider M.P., et al. The gigantocellular reticular nucleus plays a significant role in locomotor recovery after incomplete spinal cord injury // J Neurosci. 2020. Vol. 40, N 43. P. 8292–8305. doi: 10.1523/JNEUROSCI.0474-20.2020

[115]

Bareyre FM, Kerschensteiner M, Raineteau O, et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 2004;7(3):269–277. doi: 10.1038/nn1195

[116]

Bareyre F.M., Kerschensteiner M., Raineteau O., et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats // Nat Neurosci. 2004. Vol. 7. N 3. P. 269–277. doi: 10.1038/nn1195

[117]

Lang C, Guo X, Kerschensteiner M, Bareyre FM. Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury. PLoS One. 2012;7(1):e30461. doi: 10.1371/journal.pone.0030461

[118]

Lang C., Guo X., Kerschensteiner M., Bareyre F.M. Single collateral reconstructions reveal distinct phases of corticospinal remodeling after spinal cord injury // PLoS One. 2012. Vol. 7, N 1. P. e30461. doi: 10.1371/journal.pone.0030461

[119]

Conta Steencken AC, Stelzner DJ. Loss of propriospinal neurons after spinal contusion injury as assessed by retrograde labeling. Neuroscience. 2010;170(3):971–980. doi: 10.1016/j.neuroscience.2010.06.064

[120]

Conta Steencken A.C., Stelzner D.J. Loss of propriospinal neurons after spinal contusion injury as assessed by retrograde labeling // Neuroscience. 2010. Vol. 170, N 3. P. 971–980. doi: 10.1016/j.neuroscience.2010.06.064

[121]

Siebert JR, Middleton FA, Stelzner DJ. Long descending cervical propriospinal neurons differ from thoracic propriospinal neurons in response to low thoracic spinal injury. BMC Neurosci. 2010;11:148. doi: 10.1186/1471-2202-11-148

[122]

Siebert J.R., Middleton F.A., Stelzner D.J. Long descending cervical propriospinal neurons differ from thoracic propriospinal neurons in response to low thoracic spinal injury // BMC Neurosci. 2010. Vol. 11. P. 148. doi: 10.1186/1471-2202-11-148

[123]

Loy K, Schmalz A, Hoche T, et al. Enhanced Voluntary exercise improves functional recovery following spinal cord injury by impacting the local neuroglial injury response and supporting the rewiring of supraspinal circuits. J Neurotrauma. 2018;35(24):2904–2915. doi: 10.1089/neu.2017.5544

[124]

Loy K., Schmalz A., Hoche T., et al. Enhanced voluntary exercise improves functional recovery following spinal cord injury by impacting the local neuroglial injury response and supporting the rewiring of supraspinal circuits // J Neurotrauma. 2018. Vol. 35, N 24. P. 2904–2915. doi: 10.1089/neu.2017.5544

[125]

Wang Y, Wu W, Wu X, et al. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery. Elife. 2018;7:e39016. doi: 10.7554/eLife.39016

[126]

Wang Y., Wu W., Wu X., et al. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery // Elife. 2018. Vol. 7. P. e39016. doi: 10.7554/eLife.39016

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/