Proteomic and transcriptomic response of human skeletal muscle to 12-week resistance training
Egor M. Lednev , Tatiana F. Vepkhvadze , Igor P. Smirnov , Rinat I. Sultanov , Andrey V. Zhelankin , Alexandra V. Kanygina , Daniil V. Popov , Edward V. Generozov
Genes & Cells ›› 2024, Vol. 19 ›› Issue (2) : 279 -295.
Proteomic and transcriptomic response of human skeletal muscle to 12-week resistance training
BACKGROUND: Decreased skeletal muscle mass and properties lead to the development of various pathologies and increased risk for injuries. Studies of the molecular mechanisms of skeletal muscle adaptation to resistance training to increase muscle mass and strength appear imperative for medicine and sports.
AIM: To assess changes in the proteomic profile (quantitative panoramic mass spectrometric analysis) of skeletal muscles and the correlation of these changes with the expression of the corresponding mRNAs (RNA-sequencing) before and after 12 weeks of strength training and changes in the transcriptome 8 and 24 h after an acute resistance exercise with one leg.
METHODS: Ten untrained men (aged 23 [20.8–25.9] years; body mass index, 22 [20.9–25.1] kg/m2) performed a two-legged seated platform press for 12 weeks (3 times/week, 50–75% of maximum voluntary contraction [MVC]). After training, the volunteers performed an acute strength exercise with one leg. Before and after 12 weeks of training, the MVC and volume of the quadriceps femoris muscle were assessed. Before and after training, as well as 8 and 24 h after the acute resistance exercise, a biopsy of the vastus lateralis muscle was performed from the loaded and contralateral limbs for immunohistochemical, proteomic (high-performance liquid chromatography-tandem mass spectrometry), and transcriptomic (RNA-sequencing) analyses.
RESULTS: The 12-week strength training increased the MVC by 19%, quadriceps femoris volume by 12%, cross-sectional area of type 2 (fast) fibers by 29%, minimum Feret diameter of type 2 fibers by 10%, and type 1 (slow) fibers by 13%. Of the 1174 detected proteins, 24 increased, and 83 decreased in content. Strength training resulted in an increase in the expression levels of 142 and a decrease in 65 of the 12,112 mRNAs detected, with enrichment for the functional terms of the extracellular environment, matrix, basement membrane, etc. Changes in the contents of 433 mRNAs after 8 h and 639 mRNAs after 24 h were found when comparing the once-loaded muscle with the contralateral one (genes associated with contractile activity). Changes in the content of only a small part of proteins (5–9 out of 107) correlated with the changes in the corresponding mRNAs.
CONCLUSION: Proteomic analysis showed that the 12-week resistance training had little effect on the relative abundance of high-abundance proteins in muscles. The increase in muscle mass induced by training appears to be explained by a similar change in the synthesis/degradation rates of the detected proteins. In the comparison of proteomic data with changes in mRNA expression after 12 weeks of training and 8 and 24 h after a single load (gene response specific to contractile activity), changes in protein contents caused by strength training were regulated mainly at the post-transcriptional level.
gene expression / resistance training / cell plasticity / muscle fibers / hypertrophy / proteomics
| [1] |
Vinogradova OL, Popov DV, Netreba AI, et al. Optimization of training: development of a new partial load mode of strength training. Fiziologiya Cheloveka. 2013;39(5):71–85. EDN: RBUREZ doi: 10.7868/s0131164613050172 |
| [2] |
Виноградова О.Л., Попов Д.В., Нетреба А.И., и др. Оптимизация процесса физической тренировки: разработка новых «щадящих» подходов к тренировке силовых возможностей // Физиология человека. 2013. Т. 39, № 5. С. 71–85. EDN: RBUREZ doi: 10.7868/s0131164613050172 |
| [3] |
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular regulation of skeletal muscle growth and organelle biosynthesis: practical recommendations for exercise training. Int J Mol Sci. 2021;22(5):2741. doi: 10.3390/ijms22052741 |
| [4] |
Solsona R., Pavlin L., Bernardi H., Sanchez A.M. Molecular regulation of skeletal muscle growth and organelle biosynthesis: practical recommendations for exercise training // Int J Mol Sci. 2021. Vol. 22, № 5. P. 2741. doi: 10.3390/ijms22052741 |
| [5] |
Mesquita PHC, Vann CG, Phillips SM, et al. Skeletal muscle ribosome and mitochondrial biogenesis in response to different exercise training modalities. Front Physiol. 2021;12:725866. doi: 10.3389/fphys.2021.725866 |
| [6] |
Mesquita P.H.C., Vann C.G., Phillips S.M., et al. Skeletal muscle ribosome and mitochondrial biogenesis in response to different exercise training modalities // Front Physiol. 2021. Vol. 12. P. 725866. doi: 10.3389/fphys.2021.725866 |
| [7] |
Deane CS, Phillips BE, Willis CRG, et al. Proteomic features of skeletal muscle adaptation to resistance exercise training as a function of age. Geroscience. 2023;45(3):1271–1287. doi: 10.1007/s11357-022-00658-5 |
| [8] |
Deane C.S., Phillips B.E., Willis C.R.G., et al. Proteomic features of skeletal muscle adaptation to resistance exercise training as a function of age // Geroscience. 2023. Vol. 45, N 3. P. 1271–1287. doi: 10.1007/s11357-022-00658-5 |
| [9] |
Haun CT, Vann CG, Osburn SC, et al. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PLoS One. 2019;14(6):e0215267. doi: 10.1371/journal.pone.0215267 |
| [10] |
Haun C.T., Vann C.G., Osburn S.C., et al. Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy // PLoS One. 2019. Vol. 14, N 6. P. e0215267. doi: 10.1371/journal.pone.0215267 |
| [11] |
Petriz BA, Gomes CPC, Almeida JA, et al. The effects of acute and chronic exercise on skeletal muscle proteome. J Cell Physiol. 2017;232(2):257–269. doi: 10.1002/jcp.25477 |
| [12] |
Petriz B.A., Gomes C.P.C., Almeida J.A., et al. The effects of acute and chronic exercise on skeletal muscle proteome // J Cell Physiol. 2017. Vol. 232, N 2. P. 257–269. doi: 10.1002/jcp.25477 |
| [13] |
Oertzen-Hagemann V, Kirmse M, Eggers B, et al. Effects of 12 weeks of hypertrophy resistance exercise training combined with collagen peptide supplementation on the skeletal muscle proteome in recreationally active men. Nutrients. 2019;11(5):1072. doi: 10.3390/nu11051072 |
| [14] |
Oertzen-Hagemann V., Kirmse M., Eggers B., et al. Effects of 12 weeks of hypertrophy resistance exercise training combined with collagen peptide supplementation on the skeletal muscle proteome in recreationally active men // Nutrients. 2019. Vol. 11, N 5. P. 1072. doi: 10.3390/nu11051072 |
| [15] |
Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol (1985). 2013;114(1):81–89. doi: 10.1152/japplphysiol.01013.2012 |
| [16] |
Lundberg T.R., Fernandez-Gonzalo R., Gustafsson T., Tesch P.A. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training // J Appl Physiol (1985). 2013. Vol. 114, N 1. P. 81–89. doi: 10.1152/japplphysiol.01013.2012 |
| [17] |
Damas F, Ugrinowitsch C, Libardi CA, et al. Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress. Eur J Appl Physiol. 2018;118(12):2607–2616. doi: 10.1007/s00421-018-3984-y |
| [18] |
Damas F., Ugrinowitsch C., Libardi C.A., et al. Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress // Eur J Appl Physiol. 2018. Vol. 118, N 12. P. 2607–2616. doi: 10.1007/s00421-018-3984-y |
| [19] |
Liu D, Sartor MA, Nader GA, et al. Skeletal muscle gene expression in response to resistance exercise: sex specific regulation. BMC Genomics. 2010;11:659. doi: 10.1186/1471-2164-11-659 |
| [20] |
Liu D., Sartor M.A., Nader G.A., et al. Skeletal muscle gene expression in response to resistance exercise: sex specific regulation // BMC Genomics. 2010. Vol. 11. P. 659. doi: 10.1186/1471-2164-11-659 |
| [21] |
Nascimento EBM, Hangelbroek RWJ, Hooiveld GJEJ, et al. Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers. BMC Med Genomics. 2020;13(1):124. doi: 10.1186/s12920-020-00784-z |
| [22] |
Nascimento E.B.M., Hangelbroek R.W.J., Hooiveld G.J.E.J., et al. Comparative transcriptome analysis of human skeletal muscle in response to cold acclimation and exercise training in human volunteers // BMC Med Genomics. 2020. Vol. 13, N 1. P. 124. doi: 10.1186/s12920-020-00784-z |
| [23] |
Stepto NK, Coffey VG, Carey AL, et al. Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc. 2009;41(3):546–565. doi: 10.1249/MSS.0b013e31818c6be9 |
| [24] |
Stepto N.K., Coffey V.G., Carey A.L., et al. Global gene expression in skeletal muscle from well-trained strength and endurance athletes // Med Sci Sports Exerc. 2009. Vol. 41, N 3. P. 546–565. doi: 10.1249/MSS.0b013e31818c6be9 |
| [25] |
Raue U, Trappe TA, Estrem ST, et al. Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol (1985). 2012;112(10):1625–1636. doi: 10.1152/japplphysiol.00435.2011 |
| [26] |
Raue U., Trappe T.A., Estrem S.T., et al. Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults // J Appl Physiol (1985). 2012. Vol. 112, N 10. P. 1625–1636. doi: 10.1152/japplphysiol.00435.2011 |
| [27] |
Gordon PM, Liu D, Sartor MA, et al. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis. J Appl Physiol (1985). 2012;112(3):443–453. doi: 10.1152/japplphysiol.00860.2011 |
| [28] |
Gordon P.M., Liu D., Sartor M.A., et al. Resistance exercise training influences skeletal muscle immune activation: a microarray analysis // J Appl Physiol (1985). 2012. Vol. 112, N 3. P. 443–453. doi: 10.1152/japplphysiol.00860.2011 |
| [29] |
Dickinson JM, D’Lugos AC, Naymik MA, et al. Transcriptome response of human skeletal muscle to divergent exercise stimuli. J Appl Physiol (1985). 2018;124(6):1529–1540. doi: 10.1152/japplphysiol.00014.2018 |
| [30] |
Dickinson J.M., D’Lugos A.C., Naymik M.A., et al. Transcriptome response of human skeletal muscle to divergent exercise stimuli // J Appl Physiol (1985). 2018. Vol. 124, N 6. P. 1529–1540. doi: 10.1152/japplphysiol.00014.2018 |
| [31] |
Catoire M, Mensink M, Boekschoten MV, et al. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle. PLoS One. 2012;7(11):e51066. doi: 10.1371/journal.pone.0051066 |
| [32] |
Catoire M., Mensink M., Boekschoten M.V., et al. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle // PLoS One. 2012. Vol. 7, N 11. P. e51066. doi: 10.1371/journal.pone.0051066 |
| [33] |
Schroder EA, Harfmann BD, Zhang X, et al. Intrinsic muscle clock is necessary for musculoskeletal health. J Physiol. 2015;593(24):5387–5404. doi: 10.1113/JP271436 |
| [34] |
Schroder E.A., Harfmann B.D., Zhang X., et al. Intrinsic muscle clock is necessary for musculoskeletal health // J Physiol. 2015. Vol. 593, N 24. P. 5387–5404. doi: 10.1113/JP271436 |
| [35] |
McCarthy JJ, Andrews JL, McDearmon EL, et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics. 2007;31(1):86–95. doi: 10.1152/physiolgenomics.00066.2007 |
| [36] |
McCarthy J.J., Andrews J.L., McDearmon E.L., et al. Identification of the circadian transcriptome in adult mouse skeletal muscle // Physiol Genomics. 2007. Vol. 31, N 1. P. 86–95. doi: 10.1152/physiolgenomics.00066.2007 |
| [37] |
Miller BH, McDearmon EL, Panda S, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A. 2007;104(9):3342–3347. doi: 10.1073/pnas.0611724104 |
| [38] |
Miller B.H., McDearmon E.L., Panda S., et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation // Proc Natl Acad Sci U S A. 2007. Vol. 104, N 9. P. 3342–3347. doi: 10.1073/pnas.0611724104 |
| [39] |
Popov DV, Makhnovskii PA, Shagimardanova EI, et al. Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2019;316(4):E605–E614. doi: 10.1152/ajpendo.00449.2018 |
| [40] |
Popov D.V., Makhnovskii P.A., Shagimardanova E.I., et al. Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle // Am J Physiol Endocrinol Metab. 2019. Vol. 316, N 4. P. E605–E614. doi: 10.1152/ajpendo.00449.2018 |
| [41] |
Zambon AC, McDearmon EL, Salomonis N, et al. Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol. 2003;4(10):R61. doi: 10.1186/gb-2003-4-10-r61 |
| [42] |
Zambon A.C., McDearmon E.L., Salomonis N., et al. Time- and exercise-dependent gene regulation in human skeletal muscle // Genome Biol. 2003. Vol. 4, N 10. P. R61. doi: 10.1186/gb-2003-4-10-r61 |
| [43] |
Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis. J Strength Cond Res. 2017;31(12):3508–3523. doi: 10.1519/JSC.0000000000002200 |
| [44] |
Schoenfeld B.J., Grgic J., Ogborn D., Krieger J.W. Strength and hypertrophy adaptations between low- vs. high-load resistance training: a systematic review and meta-analysis // J Strength Cond Res. 2017. Vol. 31, N 12. P. 3508–3523. doi: 10.1519/JSC.0000000000002200 |
| [45] |
Krieger JW. Single vs. multiple sets of resistance. J Strength Cond Res. 2010;24(4):1150–1159. doi: 10.1519/JSC.0b013e3181d4d436 |
| [46] |
Krieger J.W. Single vs. multiple sets of resistance // J Strength Cond Res. 2010. Vol. 24, N 4. P. 1150–1159. doi: 10.1519/JSC.0b013e3181d4d436 |
| [47] |
Schoenfeld BJ, Ogborn D, Krieger JW. Effects of resistance training frequency on measures of muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 2016;46(11):1689–1697. doi: 10.1007/s40279-016-0543-8 |
| [48] |
Schoenfeld B.J., Ogborn D., Krieger J.W. Effects of resistance training frequency on measures of muscle hypertrophy: a systematic review and meta-analysis // Sports Med. 2016. Vol. 46, N 11. P. 1689–1697. doi: 10.1007/s40279-016-0543-8 |
| [49] |
Shanely RA, Zwetsloot KA, Travis Triplett N, et al. Human skeletal muscle biopsy procedures using the modified Bergström technique. J Vis Exp. 2014;91:С.51812. doi: 10.3791/51812 |
| [50] |
Shanely R.A., Zwetsloot K.A., Travis Triplett N., et al. Human skeletal muscle biopsy procedures using the modified Bergström technique // J Vis Exp. 2014. N 91. P. 51812. doi: 10.3791/51812 |
| [51] |
Wiśniewski JR. Quantitative evaluation of Filter aided sample preparation (FASP) and Multienzyme digestion FASP protocols. Anal Chem. 2016;88(10):5438–5443. doi: 10.1021/acs.analchem.6b00859 |
| [52] |
Wiśniewski J.R. Quantitative evaluation of Filter aided sample preparation (FASP) and Multienzyme digestion FASP protocols // Anal Chem. 2016. Vol. 88, N 10. P. 5438–5443. doi: 10.1021/acs.analchem.6b00859 |
| [53] |
Yu SH, Kyriakidou P, Cox J. Isobaric matching between runs and novel PSM-level normalization in maxquant strongly improve reporter ion-based quantification. J Proteome Res. 2020;19(10):3945–3954. doi: 10.1021/acs.jproteome.0c00209 |
| [54] |
Yu S.H., Kyriakidou P., Cox J. Isobaric matching between runs and novel PSM-level normalization in maxquant strongly improve reporter ion-based quantification // J Proteome Res. 2020. Vol. 19, N 10. P. 3945–3954. doi: 10.1021/acs.jproteome.0c00209 |
| [55] |
Popov DV, Makhnovskii PA, Zgoda VG, et al. Rapid changes in transcriptomic profile and mitochondrial function in human soleus muscle after 3-day dry immersion. J Appl Physiol (1985). 2023;134(5):1256–1264. doi: 10.1152/japplphysiol.00048.2023 |
| [56] |
Popov D.V., Makhnovskii P.A., Zgoda V.G., et al. Rapid changes in transcriptomic profile and mitochondrial function in human soleus muscle after 3-day dry immersion // J Appl Physiol (1985). 2023. Vol. 134, N 5. P. 1256–1264. doi: 10.1152/japplphysiol.00048.2023 |
| [57] |
Campos GE, Luecke TJ, Wendeln HK, et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1-2):50–60. doi: 10.1007/s00421-002-0681-6 |
| [58] |
Campos G.E., Luecke T.J., Wendeln H.K., et al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones // Eur J Appl Physiol. 2002. Vol. 88, N 1-2. P. 50–60. doi: 10.1007/s00421-002-0681-6 |
| [59] |
Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47(5):917–941. doi: 10.1007/s40279-016-0628-4 |
| [60] |
Douglas J., Pearson S., Ross A., McGuigan M. Chronic adaptations to eccentric training: a systematic review // Sports Med. 2017. Vol. 47, N 5. P. 917–941. doi: 10.1007/s40279-016-0628-4 |
| [61] |
Schild M, Ruhs A, Beiter T, et al. Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals. J Proteomics. 2015;122:119–132. doi: 10.1016/j.jprot.2015.03.028 |
| [62] |
Schild M., Ruhs A., Beiter T., et al. Basal and exercise induced label-free quantitative protein profiling of m. vastus lateralis in trained and untrained individuals // J Proteomics. 2015. Vol. 122. P. 119–132. doi: 10.1016/j.jprot.2015.03.028 |
| [63] |
Makhnovskii PA, Zgoda VG, Bokov RO, et al. Regulation of proteins in human skeletal muscle: the role of transcription. Sci Rep. 2020;10(1):3514. doi: 10.1038/s41598-020-60578-2 |
| [64] |
Makhnovskii P.A., Zgoda V.G., Bokov R.O., et al. Regulation of proteins in human skeletal muscle: the role of transcription // Sci Rep. 2020. Vol. 10, N 1. P. 3514. doi: 10.1038/s41598-020-60578-2 |
| [65] |
Methenitis S, Spengos K, Zaras N, et al. Fiber type composition and rate of force development in endurance- and resistance-trained individuals. J Strength Cond Res. 2019;33(9):2388–2397. doi: 10.1519/JSC.0000000000002150 |
| [66] |
Methenitis S., Spengos K., Zaras N., et al. Fiber type composition and rate of force development in endurance- and resistance-trained individuals // J Strength Cond Res. 2019. Vol. 33, N 9. P. 2388–2397. doi: 10.1519/JSC.0000000000002150 |
| [67] |
Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle. Scand J Med Sci Sports. 2017;27(7):724–735. doi: 10.1111/sms.12678 |
| [68] |
Pareja-Blanco F., Rodríguez-Rosell D., Sánchez-Medina L., et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle // Scand J Med Sci Sports. 2017. Vol. 27, N 7. P. 724–735. doi: 10.1111/sms.12678 |
| [69] |
Andersen JL, Aagaard P. Myosin heavy chain IIx overshoot in human skeletal muscle. Muscle Nerve. 2000;23(7):1095–1104. doi: 10.1002/1097-4598(200007)23:7<1095::aid-mus13>3.0.co;2-o |
| [70] |
Andersen J.L., Aagaard P. Myosin heavy chain IIx overshoot in human skeletal muscle // Muscle Nerve. 2000. Vol. 23, N 7. P. 1095–1104. doi: 10.1002/1097-4598(200007)23:7<1095::aid-mus13>3.0.co;2-o |
| [71] |
Zhao YC, Wu YY. Resistance training improves hypertrophic and mitochondrial adaptation in skeletal muscle. Int J Sports Med. 2023;44(9):625–633. doi: 10.1055/a-2059-9175 |
| [72] |
Zhao Y.C., Wu Y.Y. Resistance training improves hypertrophic and mitochondrial adaptation in skeletal muscle // Int J Sports Med. 2023. Vol. 44, N 9. P. 625–633. doi: 10.1055/a-2059-9175 |
| [73] |
Parry HA, Roberts MD, Kavazis AN. Human skeletal muscle mitochondrial adaptations following resistance exercise training. Int J Sports Med. 2020;41(6):349–359. doi: 10.1055/a-1121-7851 |
| [74] |
Parry H.A., Roberts M.D., Kavazis A.N. Human skeletal muscle mitochondrial adaptations following resistance exercise training // Int J Sports Med. 2020. Vol. 41, N 6. P. 349–359. doi: 10.1055/a-1121-7851 |
| [75] |
Wang D, Eraslan B, Wieland T, et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol Syst Biol. 2019;15(2):e8503. doi: 10.15252/msb.20188503 |
| [76] |
Wang D., Eraslan B., Wieland T., et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues // Mol Syst Biol. 2019. Vol. 15, N 2. P. e8503. doi: 10.15252/msb.20188503 |
| [77] |
Schwanhäusser B, Busse D, Li N, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–342. Corrected and republished from: Nature. 2013;495(7439):126–127. doi: 10.1038/nature10098 |
| [78] |
Schwanhäusser B., Busse D., Li N., et al. Global quantification of mammalian gene expression control // Nature. 2011. Vol. 473, N 7347. P. 337–342. Corrected and republished from: Nature. 2013. Vol. 495, N 7439. P. 126–127. doi: 10.1038/nature10098 |
| [79] |
Jovanovic M, Rooney MS, Mertins P, et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science. 2015;347(6226):1259038. doi: 10.1126/science.1259038 |
| [80] |
Jovanovic M., Rooney M.S., Mertins P., et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens // Science. 2015. Vol. 347, N 6226. P. 1259038. doi: 10.1126/science.1259038 |
Eco-Vector
/
| 〈 |
|
〉 |