Brain neurotrophic factor BDNF: new data, functions and questions
Maryana Zhivkovich , Elizaveta V. Ermolaeva , Alesya V. Soboleva , Ekaterina M. Samoilova , Daria A. Chudakova , Vladimir P. Baklaushev
Genes & Cells ›› 2024, Vol. 19 ›› Issue (1) : 61 -84.
Brain neurotrophic factor BDNF: new data, functions and questions
The brain-derived neurotrophic factor (BDNF) is a key modulator of neurogenesis, synaptogenesis, neuroregeneration, and cell differentiation in the nervous system. Impaired BDNF functioning is a characteristic of various neurological diseases, such as Alzheimer’s disease, multiple sclerosis, and depressive disorders. There is recent evidence that patients with COVID-19 have reduced BDNF levels in the blood plasma. Furthermore, exogenous BDNF and its mimetics have demonstrated therapeutic potential.
In this review, we systematized data of the BDNF gene structure, epigenetic and microRNA-mediated regulation of its expression, transcriptional variants of BDNF, and the effects of BDNF on neuronal and oligodendroglial differentiation. Further, we point out the gaps in the current knowledge about BDNF and propose experiments that can expand such knowledge and the range of possibilities for using BDNF in biomedicine. These include determining the expression pattern of all BDNF gene transcripts at different stages of differentiation and in different cell subpopulations and studying the role of receptor-independent BDNF signaling, circadian fluctuations in BDNF levels, and their role in physiological and pathophysiological conditions. Finally, for translational medicine, evaluating the effect of BDNF mimetics (including those immobilized on three-dimensional scaffolds for tissue engineering) on neuronal and oligodendroglial differentiation of pluripotent and polypotent cells and identifying molecular regulators of BDNF transcription, including small molecules and microRNAs capable of regulating BDNF gene expression, are crucial.
brain-derived neurotrophic factor BDNF / cell reprogramming / neuronal differentiation / oligodendroglial differentiation / neurotrophins / BDNF gene
| [1] |
Kozlov EM, Grechko AV, Chegodaev YS, et al. Contribution of neurotrophins to the immune system regulation and possible connection to alcohol addiction. Biology (Basel). 2020;9(4):63. doi: 10.3390/biology9040063 |
| [2] |
Kozlov E.M., Grechko A.V., Chegodaev Y.S., et al. Contribution of neurotrophins to the immune system regulation and possible connection to alcohol addiction // Biology (Basel). 2020. Vol. 9, N 4. P. 63. doi: 10.3390/biology9040063 |
| [3] |
Kryzhanovskaya SYu, Zapara MA, Glazachev OS, et al. Neurotrophins and adaptation to environmental stimuli: opportunities for expanding «therapeutic capacity» (mini-review). Herald of the International Academy of Science, Russian Section. 2020;(1):36–43. EDN: HZOKQY |
| [4] |
Крыжановская С.Ю., Запара М.А., Глазачев О.С. Нейротрофины и адаптация к средовым стимулам: возможности расширения» терапевтического потенциала» (краткий обзор) // Вестник международной академии наук. Русская секция. 2020. № 1. С. 36–43. EDN: HZOKQY |
| [5] |
Hang PZ, Zhu H, Li PF, et al. The emerging role of BDNF/TrkB signaling in cardiovascular diseases. Life (Basel). 2021;11(1):70. doi: 10.3390/life11010070 |
| [6] |
Hang P.Z., Zhu H., Li P.F., et al. The emerging role of BDNF/TrkB signaling in cardiovascular diseases // Life (Basel). 2021. Vol. 11, N 1. P. 70. doi: 10.3390/life11010070 |
| [7] |
Ostrova IV, Golubeva NV, Kuzovlev AN, Golubev AM. Prognostic value and therapeutic potential of brain-derived neurotrophic factor (BDNF) in brain injuries (review). General Reanimatology. 2019;15(1):70–86. EDN: YYFLHV doi: 10.15360/1813-9779-2019-1-70-86 |
| [8] |
Острова И.В., Голубева Н.В., Кузовлев А.Н., Голубев А.М. Прогностическая значимость и терапевтический потенциал мозгового нейротрофического фактора BDNF при повреждении головного мозга (обзор) // Общая реаниматология. 2019. T. 15, № 1. С. 70–86. EDN: YYFLHV doi: 10.15360/1813-9779-2019-1-70-86 |
| [9] |
Cologne OL, Levitina EV, Rakhmanina OA. Brain neurotrophic factor BDNF as a biochemical marker of neuroplasticity in epileptic encephalopathies of infancy. Russian Bulletin of Perinatology and Pediatrics. 2020;65(4):288. (In Russ). EDN: BVAIXA |
| [10] |
Кельн О.Л., Левитина Е.В., Рахманина О.А. Мозговой нейротрофический фактор BDNF как биохимический маркер нейропластичности при эпилептических энцефалопатиях младенческого возраста // Российский вестник перинатологии и педиатрии. 2020. T. 65, № 4. С. 288. EDN: BVAIXA |
| [11] |
Schirò G, Iacono S, Ragonese P, et al. A brief overview on BDNF-Trk pathway in the nervous system: a potential biomarker or possible target in treatment of multiple sclerosis? Front Neurol. 2022;13:917527. doi: 10.3389/fneur.2022.917527 |
| [12] |
Schirò G., Iacono S., Ragonese P., et al. A brief overview on BDNF-Trk pathway in the nervous system: a potential biomarker or possible target in treatment of multiple sclerosis? // Front Neurol. 2022. Vol. 13. P. 917527. doi: 10.3389/fneur.2022.917527 |
| [13] |
Brunelli S, Giannella E, Bizzaglia M, et al. Secondary neurodegeneration following stroke: what can blood biomarkers tell us? Front Neurol. 2023;14:1198216. doi: 10.3389/fneur.2023.1198216 |
| [14] |
Brunelli S., Giannella E., Bizzaglia M., et al. Secondary neurodegeneration following stroke: what can blood biomarkers tell us? // Front Neurol. 2023. Vol. 14. P. 1198216. doi: 10.3389/fneur.2023.1198216 |
| [15] |
Suzuki H, Imajo Y, Funaba M, et al. Current concepts of biomaterial scaffolds and regenerative therapy for spinal cord injury. Int J Mol Sci. 2023;24(3):2528. doi: 10.3390/ijms24032528 |
| [16] |
Suzuki H., Imajo Y., Funaba M., et al. Current concepts of biomaterial scaffolds and regenerative therapy for spinal cord injury // Int J Mol Sci. 2023. Vol. 24, N 3. P. 2528. doi: 10.3390/ijms24032528 |
| [17] |
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11(6):1164–1178. doi: 10.5114/aoms.2015.56342 |
| [18] |
Bathina S., Das U.N. Brain-derived neurotrophic factor and its clinical implications // Arch Med Sci. 2015. Vol. 11, N 6. P. 1164–1178. doi: 10.5114/aoms.2015.56342 |
| [19] |
Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982;1(5):549–553. doi: 10.1002/j.1460-2075.1982.tb01207.x |
| [20] |
Barde Y.A., Edgar D., Thoenen H. Purification of a new neurotrophic factor from mammalian brain // EMBO J. 1982. Vol. 1, N 5. P. 549–553. doi: 10.1002/j.1460-2075.1982.tb01207.x |
| [21] |
Alsina B, Vu T, Cohen-Cory S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci. 2001;4(11):1093–1101. doi: 10.1038/nn735 |
| [22] |
Alsina B., Vu T., Cohen-Cory S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF // Nat Neurosci. 2001. Vol. 4, N 11. P. 1093–1101. doi: 10.1038/nn735 |
| [23] |
Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci. 2020;21(20):7777. doi: 10.3390/ijms21207777 |
| [24] |
Colucci-D’Amato L., Speranza L., Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer // Int J Mol Sci. 2020. Vol. 21, N 20. P. 7777. doi: 10.3390/ijms21207777 |
| [25] |
Radin DP, Patel P. BDNF: an oncogene or tumor suppressor? Anticancer Res. 2017;37(8):3983–3990. doi: 10.21873/anticanres.11783 |
| [26] |
Radin D.P., Patel P. BDNF: an oncogene or tumor suppressor? // Anticancer Res. 2017. Vol. 37, N 8. P. 3983–3990. doi: 10.21873/anticanres.11783 |
| [27] |
Long J, Jiang C, Liu B, et al. MicroRNA-15a-5p suppresses cancer proliferation and division in human hepatocellular carcinoma by targeting BDNF. Tumour Biol. 2016;37(5):5821–5828. doi: 10.1007/s13277-015-4427-6 |
| [28] |
Long J., Jiang C., Liu B., et al. MicroRNA-15a-5p suppresses cancer proliferation and division in human hepatocellular carcinoma by targeting BDNF // Tumor Biology. 2016. Vol. 37, N 5. P. 5821–5828. doi: 10.1007/s13277-015-4427-6 |
| [29] |
Chen B, Liang Y, He Z, et al. Autocrine activity of BDNF induced by the STAT3 signaling pathway causes prolonged TrkB activation and promotes human non-small-cell lung cancer proliferation. Sci Rep. 2016;6:30404. doi: 10.1038/srep30404 |
| [30] |
Chen B., Liang Y., He Z., et al. Autocrine activity of BDNF induced by the STAT3 signaling pathway causes prolonged TrkB activation and promotes human non-small-cell lung cancer proliferation // Sci Rep. 2016. Vol. 6. P. 30404. doi: 10.1038/srep30404 |
| [31] |
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for oligodendrocyte and myelin repair in traumatic CNS injury. Front Cell Neurosci. 2021;14:619707. doi: 10.3389/fncel.2020.619707 |
| [32] |
Huntemer-Silveira A., Patil N., Brickner M.A., Parr A.M. Strategies for oligodendrocyte and myelin repair in traumatic CNS injury // Front Cell Neurosci. 2021. Vol. 14. P. 619707. doi: 10.3389/fncel.2020.619707 |
| [33] |
Liu X, Zhang J, Cheng X, et al. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury. Regen Biomater. 2022;10:rbac085. doi: 10.1093/rb/rbac085 |
| [34] |
Liu X., Zhang J., Cheng X., et al. Integrated printed BDNF-stimulated HUCMSCs-derived exosomes/collagen/chitosan biological scaffolds with 3D printing technology promoted the remodelling of neural networks after traumatic brain injury // Regen Biomater. 2022. Vol. 10. P. rbac085. doi: 10.1093/rb/rbac085 |
| [35] |
Hassannejad Z, Zadegan SA, Vaccaro AR, et al. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury. Injury. 2019;50(2):278–285. Corrected and republished from: Injury. 2019;50(6):1267. doi: 10.1016/j.injury.2018.12.027 |
| [36] |
Hassannejad Z., Zadegan S.A., Vaccaro A.R., et al. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury // Injury. 2019. Vol. 50, N 2. P. 278–285. Corrected and republished from: Injury. 2019. Vol. 50, N 6. P. 1267. doi: 10.1016/j.injury.2018.12.027 |
| [37] |
Rudnitskaya EA, Kolosova NG, Stefanova NA. Brain neurotrophic supplementation in onthogenesis and during development of neurodegenerative diseases. Moscow University Biological Sciences Bulletin. 2016;71(4): 245–255. EDN: WVOTPX |
| [38] |
Рудницкая Е.А., Колосова Н.Г., Стефанова Н.А. Нейротрофическое обеспечение головного мозга в онтогенезе и при развитии нейродегенеративных заболеваний // Вестник Московского Университета. Серия 16. Биология. 2016. № 4. С. 72–82. EDN: WVOTPX |
| [39] |
Gudasheva TA, Tarasiuk AV, Povarnina PYu, Seredenin SB. Brain-derived neurotrophic factor and its low-molecular mimetics. Pharmacokinetics and Pharmacodynamics. 2017;(3):3–13. EDN: ZREBWZ |
| [40] |
Гудашева Т.А., Тарасюк А.В., Поварнина П.Ю., Середенин С.Б. Мозговой нейротрофический фактор и его низкомолекулярные миметики // Фармакокинетика и фармакодинамика. 2017. № 3. С. 3–13. EDN: ZREBWZ |
| [41] |
Fominova UN, Gurina OI, Shepeleva II, et al. Brain-derived neurotrophic factor: structure and interaction with receptors. Russian Journal of Psychiatry. 2018;(4):64–72. EDN: XWCSBF |
| [42] |
Фоминова У.Н., Гурина О.И., Шепелева И.И., и др. Нейротрофический фактор головного мозга: структура и взаимодействие с рецепторами // Российский психиатрический журнал. 2018. № 4. С. 64–72. EDN: XWCSBF |
| [43] |
Semkina AA, Alifirova VM, Titova MA, et al. Brain-derived neurotrophic factor in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(2-2):28–35. EDN: EYSRZO doi: 10.17116/jnevro20191192228 |
| [44] |
Сёмкина А.А., Алифирова В.М., Титова М.А., и др. Мозговой нейротрофический фактор при рассеянном склерозе // Журнал неврологии и психиатрии им. CC Корсакова. 2018. Т. 119, № 2-2. С. 28–35. EDN: EYSRZO doi: 10.17116/jnevro20191192228 |
| [45] |
Munshi S.T. Modeling human brain diseases using pluripotent stem cells [Internet]. Erasmus University Rotterdam; 2019. Available from: http://hdl.handle.net/1765/109094 |
| [46] |
Ghanbari M., Munshi S.T., Ma B., et al. A functional variant in the miR-142 promoter modulating its expression and conferring risk of Alzheimer disease // Hum Mutat. 2019. Vol. 40, N 11. P. 2131–2145. doi: 10.1002/humu.23872 |
| [47] |
Esvald EE, Tuvikene J, Kiir CS, et al. Revisiting the expression of BDNF and its receptors in mammalian development. Front Mol Neurosci. 2023;16:1182499. doi: 10.3389/fnmol.2023.1182499 |
| [48] |
Esvald E.E., Tuvikene J., Kiir C.S., et al. Revisiting the expression of BDNF and its receptors in mammalian development // Front Mol Neurosci. 2023. Vol. 16. P. 1182499. doi: 10.3389/fnmol.2023.1182499 |
| [49] |
Nakahashi T, Fujimura H, Altar CA, et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett. 2000;470(2):113–117. doi: 10.1016/s0014-5793(00)01302-8 |
| [50] |
Nakahashi T., Fujimura H., Altar C.A., et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor // FEBS Lett. 2000. Vol. 470, N 2. P. 113–117. doi: 10.1016/s0014-5793(00)01302-8 |
| [51] |
Pius-Sadowska E, Machaliński B. BDNF — a key player in cardiovascular system. J Mol Cell Cardiol. 2017;110:54–60. doi: 10.1016/j.yjmcc.2017.07.007 |
| [52] |
Pius-Sadowska E., Machaliński B. BDNF — a key player in cardiovascular system // J Mol Cell Cardiol. 2017. Vol. 110. P. 54–60. doi: 10.1016/j.yjmcc.2017.07.007 |
| [53] |
Anders QS, Ferreira LVB, Rodrigues LCM, Nakamura-Palacios EM. BDNF mRNA expression in leukocytes and frontal cortex function in drug use disorder. Front Psychiatry. 2020;11:469. doi: 10.3389/fpsyt.2020.00469 |
| [54] |
Anders Q.S., Ferreira L.V.B., Rodrigues L.C.M., Nakamura-Palacios E.M. BDNF mRNA expression in leukocytes and frontal cortex function in drug use disorder // Front Psychiatry. 2020. Vol. 11. P. 469. doi: 10.3389/fpsyt.2020.00469 |
| [55] |
Chacón-Fernández P, Säuberli K, Colzani M, et al. Brain-derived neurotrophic factor in megakaryocytes. J Biol Chem. 2016;291(19):9872–9881. doi: 10.1074/jbc.M116.720029 |
| [56] |
Chacón-Fernández P., Säuberli K., Colzani M., et al. Brain-derived neurotrophic factor in megakaryocytes // J Biol Chem. 2016. Vol. 291, N 19. P. 9872–9881. doi: 10.1074/jbc.M116.720029 |
| [57] |
Katoh-Semba R, Takeuchi IK, Semba R, Kato K. Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem. 1997;69(1):34–42. doi: 10.1046/j.1471-4159.1997.69010034.x |
| [58] |
Katoh-Semba R., Takeuchi I.K., Semba R., Kato K. Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain // J Neurochem. 1997. Vol. 69, N 1. P. 34–42. doi: 10.1046/j.1471-4159.1997.69010034.x |
| [59] |
Maisonpierre PC, Le Beau MM, Espinosa R 3rd, et al. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics. 1991;10(3):558–568. doi: 10.1016/0888-7543(91)90436-i |
| [60] |
Maisonpierre P.C., Le Beau M.M., Espinosa R. 3rd, et al. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosoma localizations // Genomics. 1991. Vol. 10, N 3. P. 558–568. doi: 10.1016/0888-7543(91)90436-i |
| [61] |
Karege F, Perret G, Bondolfi G, et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109(2):143–148. doi: 10.1016/s0165-1781(02)00005-7 |
| [62] |
Karege F., Perret G., Bondolfi G., et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients // Psychiatry Res. 2002. Vol. 109, N 2. P. 143–148. doi: 10.1016/s0165-1781(02)00005-7 |
| [63] |
Weickert CS, Hyde TM, Lipska BK, et al. Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry. 2003;8(6):592–610. doi: 10.1038/sj.mp.4001308 |
| [64] |
Weickert C.S., Hyde T.M., Lipska B.K., et al. Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia // Mol Psychiatry. 2003. Vol. 8, N 6. P. 592–610. doi: 10.1038/sj.mp.4001308 |
| [65] |
Kauer-Sant’Anna M, Kapczinski F, Andreazza AC, et al. Brain-derived neurotrophic factor and inflammatory markers in patients with early- vs. late-stage bipolar disorder. Int J Neuropsychopharmacol. 2009;12(4):447–458. doi: 10.1017/S1461145708009310 |
| [66] |
Kauer-Sant’Anna M., Kapczinski F., Andreazza A.C, et al. Brain-derived neurotrophic factor and inflammatory markers in patients with early- vs. late-stage bipolar disorder // Int J Neuropsychopharmacol. 2009. Vol. 12, N 4. P. 447–458. doi: 10.1017/S1461145708009310 |
| [67] |
Scalzo P, Kümmer A, Bretas TL, et al. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease. J Neurol. 2010;257(4):540–545. doi: 10.1007/s00415-009-5357-2 |
| [68] |
Scalzo P., Kümmer A., Bretas T.L., et al. Serum levels of brain-derived neurotrophic factor correlate with motor impairment in Parkinson’s disease // J Neurol. 2010. Vol. 257, N 4. P. 540–545. doi: 10.1007/s00415-009-5357-2 |
| [69] |
Sohrabji F, Lewis DK. Estrogen-BDNF interactions: implications for neurodegenerative diseases. Front Neuroendocrinol. 2006;27(4):404–414. doi: 10.1016/j.yfrne.2006.09.003 |
| [70] |
Sohrabji F., Lewis D.K. Estrogen-BDNF interactions: implications for neurodegenerative diseases // Front Neuroendocrinol. 2006. Vol. 27, N 4. P. 404–414. doi: 10.1016/j.yfrne.2006.09.003 |
| [71] |
Mughal MR, Baharani A, Chigurupati S, et al. Electroconvulsive shock ameliorates disease processes and extends survival in huntingtin mutant mice. Hum Mol Genet. 2011;20(4):659–669. Corrected and republished from: Hum Mol Genet. 2011;20(10):2078. doi: 10.1093/hmg/ddq512 |
| [72] |
Mughal M.R., Baharani A., Chigurupati S., et al. Electroconvulsive shock ameliorates disease processes and extends survival in huntingtin mutant mice // Hum Mol Genet. 2011. Vol. 20, N 4. P. 659–669. Corrected and republished from: Hum Mol Genet. 2011 May 15. Vol. 20, N 10. P. 2078. doi: 10.1093/hmg/ddq512 |
| [73] |
Molendijk ML, Bus BA, Spinhoven P, et al. Gender specific associations of serum levels of brain-derived neurotrophic factor in anxiety. World J Biol Psychiatry. 2012;13(7):535–543. doi: 10.3109/15622975.2011.587892 |
| [74] |
Molendijk M.L., Bus B.A.A., Spinhoven P., et al. Gender specific associations of serum levels of brain-derived neurotrophic factor in anxiety // World J Biol Psychiatry. 2012. Vol. 13, N 7. P. 535–543. doi: 10.3109/15622975.2011.587892 |
| [75] |
Cattaneo A, Cattane N, Begni V, et al. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry. 2016;6(11):e958. doi: 10.1038/tp.2016.214 |
| [76] |
Cattaneo A., Cattane N., Begni V., et al. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders // Transl Psychiatry. 2016. Vol. 6, N 11. P. e958. doi: 10.1038/tp.2016.214 |
| [77] |
Demir B, Beyazyüz E, Beyazyüz M, et al. Long-lasting cognitive effects of COVID-19: is there a role of BDNF? Eur Arch Psychiatry Clin Neurosci. 2023;273(6):1339–1347. doi: 10.1007/s00406-022-01514-5 |
| [78] |
Demir B., Beyazyüz E., Beyazyüz M., et al. Long-lasting cognitive effects of COVID-19: is there a role of BDNF? // Eur Arch Psychiatry Clin Neurosci. 2023. Vol. 273, N 6. P. 1339–1347. doi: 10.1007/s00406-022-01514-5 |
| [79] |
Asgarzadeh A, Fouladi N, Asghariazar V, et al. Serum brain-derived neurotrophic factor (BDNF) in COVID-19 patients and its association with the COVID-19 manifestations. J Mol Neurosci. 2022;72(9):1820–1830. doi: 10.1007/s12031-022-02039-1 |
| [80] |
Asgarzadeh A., Fouladi N., Asghariazar V., et al. Serum brain-derived neurotrophic factor (BDNF) in COVID-19 patients and its association with the COVID-19 manifestations // J Mol Neurosci. 2022. Vol. 72, N 9. P. 1820–1830. doi: 10.1007/s12031-022-02039-1 |
| [81] |
Biamonte F, Re A, Balzamino BO, et al. Circulating and salivary NGF and BDNF levels in SARS-CoV-2 infection: potential predictor biomarkers of COVID-19 disease — preliminary data. J Pers Med. 2022;12(11):1877. doi: 10.3390/jpm12111877 |
| [82] |
Biamonte F., Re A., Balzamino B.O., et al. Circulating and salivary NGF and BDNF levels in SARS-CoV-2 infection: potential predictor biomarkers of COVID-19 disease — preliminary data // J Pers Med. 2022. Vol. 12, N 11. P. 1877. doi: 10.3390/jpm12111877 |
| [83] |
Lavi Y, Vojdani A, Halpert G, et al. Dysregulated levels of circulating autoantibodies against neuronal and nervous system autoantigens in COVID-19 patients. Diagnostics (Basel). 2023;13(4):687. doi: 10.3390/diagnostics13040687 |
| [84] |
Lavi Y., Vojdani A., Halpert G., et al. Dysregulated levels of circulating autoantibodies against neuronal and nervous system autoantigens in COVID-19 patients // Diagnostics (Basel). 2023. Vol. 13, N 4. P. 687. doi: 10.3390/diagnostics13040687 |
| [85] |
Palasz E, Wysocka A, Gasiorowska A, et al. BDNF as a promising therapeutic agent in parkinson’s disease. Int J Mol Sci. 2020;21(3):1170. doi: 10.3390/ijms21031170 |
| [86] |
Palasz E., Wysocka A., Gasiorowska A., et al. BDNF as a promising therapeutic agent in Parkinson’s disease // Int J Mol Sci. 2020. Vol. 21, N 3. P. 1170. doi: 10.3390/ijms21031170 |
| [87] |
Zhou X, Deng X, Liu M, et al. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy. J Control Release. 2023;357:1–19. doi: 10.1016/j.jconrel.2023.03.033 |
| [88] |
Zhou X., Deng X., Liu M., et al. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy // J Control Release. 2023. Vol. 357. P. 1–19. doi: 10.1016/j.jconrel.2023.03.033 |
| [89] |
Zimmermann T, Remmers F, Lutz B, Leschik J. ESC-derived BDNF-overexpressing neural progenitors differentially promote recovery in huntington’s disease models by enhanced striatal differentiation. Stem Cell Reports. 2016;7(4):693–706. doi: 10.1016/j.stemcr.2016.08.018 |
| [90] |
Zimmermann T., Remmers F., Lutz B., Leschik J. ESC-derived BDNF-overexpressing neural progenitors differentially promote recovery in Huntington’s disease models by enhanced striatal differentiation // Stem Cell Reports. 2016. Vol. 7, N 4. P. 693–706. doi: 10.1016/j.stemcr.2016.08.018 |
| [91] |
Kubo H, Shimizu M, Taya Y, et al. Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes Cells. 2009;14(3):407–424. doi: 10.1111/j.1365-2443.2009.01281.x |
| [92] |
Kubo H., Shimizu M., Taya Y., et al. Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry // Genes Cells. 2009. Vol. 14, N 3. P. 407–424. doi: 10.1111/j.1365-2443.2009.01281.x |
| [93] |
Wilkins A, Kemp K, Ginty M, et al. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 2009;3(1):63–70. doi: 10.1016/j.scr.2009.02.006 |
| [94] |
Wilkins A., Kemp K., Ginty M., et al. Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro // Stem Cell Res. 2009. Vol. 3, N 1. P. 63–70. doi: 10.1016/j.scr.2009.02.006 |
| [95] |
Horne MK, Nisbet DR, Forsythe JS, Parish CL. Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev. 2010;19(6):843–852. doi: 10.1089/scd.2009.0158 |
| [96] |
Horne M.K., Nisbet D.R., Forsythe J.S., Parish C.L. Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells // Stem Cells Dev. 2010. Vol. 19, N 6. P. 843–852. doi: 10.1089/scd.2009.0158 |
| [97] |
Huang C, Zhao L, Gu J, et al. The migration and differentiation of hUC-MSCs(CXCR4/GFP) encapsulated in BDNF/chitosan scaffolds for brain tissue engineering. Biomed Mater. 2016;11(3):035004. doi: 10.1088/1748-6041/11/3/035004 |
| [98] |
Huang C., Zhao L., Gu J., et al. The migration and differentiation of hUC-MSCs(CXCR4/GFP) encapsulated in BDNF/chitosan scaffolds for brain tissue engineering // Biomed Mater. 2016. Vol. 11, N 3. P. 035004. doi: 10.1088/1748-6041/11/3/035004 |
| [99] |
Antunes BM, Rossi FE, Teixeira AM, Lira FS. Short-time high-intensity exercise increases peripheral BDNF in a physical fitness-dependent way in healthy men. Eur J Sport Sci. 2020;20(1):43–50. doi: 10.1080/17461391.2019.1611929 |
| [100] |
Antunes B.M., Rossi F.E., Teixeira A.M., Lira F.S. Short-time high-intensity exercise increases peripheral BDNF in a physical fitness-dependent way in healthy men // Eur J Sport Sci. 2020. Vol. 20, N 1. P. 43–50. doi: 10.1080/17461391.2019.1611929 |
| [101] |
Reycraft JT, Islam H, Townsend LK, et al. Exercise intensity and recovery on circulating brain-derived neurotrophic factor. Med Sci Sports Exerc. 2020;52(5):1210–1217. doi: 10.1249/MSS.0000000000002242 |
| [102] |
Reycraft J.T., Islam H., Townsend L.K., et al. Exercise intensity and recovery on circulating brain-derived neurotrophic factor // Med Sci Sports Exerc. 2020. Vol. 52, N 5. P. 1210–1217. doi: 10.1249/MSS.0000000000002242 |
| [103] |
Pruunsild P, Kazantseva A, Aid T, et al. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics. 2007;90(3):397–406. doi: 10.1016/j.ygeno.2007.05.004 |
| [104] |
Pruunsild P., Kazantseva A., Aid T., et al. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters // Genomics. 2007. Vol. 90, N 3. P. 397–406. doi: 10.1016/j.ygeno.2007.05.004 |
| [105] |
Vaghi V, Polacchini A, Baj G, et al. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a “quantitative code”. J Biol Chem. 2014;289(40):27702–27713. doi: 10.1074/jbc.M114.586719 |
| [106] |
Vaghi V., Polacchini A., Baj G., et al. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a “quantitative code” // J Biol Chem. 2014. Vol. 289, N 40. P. 27702–27713. doi: 10.1074/jbc.M114.586719 |
| [107] |
Korte M, Carroll P, Wolf E, et al. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A. 1995;92(19):8856–8860. doi: 10.1073/pnas.92.19.8856 |
| [108] |
Korte M., Carroll P., Wolf E., et al. Hippocampal long-term potentiation is impaired in micelacking brain-derived neurotrophic factor // Proc Natl Acad Sci U S A. 1995. Vol. 92, N 19. P. 8856–8860. doi: 10.1073/pnas.92.19.8856 |
| [109] |
Hempstead BL. Brain-derived neurotrophic factor: three ligands, many actions. Trans Am Clin Climatol Assoc. 2015;126:9–19. |
| [110] |
Hempstead B.L. Brain-derived neurotrophic factor: three ligands, many actions // Trans Am Clin Climatol Assoc. 2015. Vol. 126. P. 9–19. |
| [111] |
Hong EJ, McCord AE, Greenberg ME. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron. 2008;60(4):610–624. doi: 10.1016/j.neuron.2008.09.024 |
| [112] |
Hong E.J., McCord A.E., Greenberg M.E. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition // Neuron. 2008. Vol. 60, N 4. P. 610–624. doi: 10.1016/j.neuron.2008.09.024 |
| [113] |
Szarowicz CA, Steece-Collier K, Caulfield ME. New frontiers in neurodegeneration and regeneration associated with brain-derived neurotrophic factor and the rs6265 single nucleotide polymorphism. Int J Mol Sci. 2022;23(14):8011. doi: 10.3390/ijms23148011 |
| [114] |
Szarowicz C.A., Steece-Collier K., Caulfield M.E. New frontiers in neurodegeneration and regeneration associated with brain-derived neurotrophic factor and the rs6265 single nucleotide polymorphism // Int J Mol Sci. 2022. Vol. 23, N 14. P. 8011. doi: 10.3390/ijms23148011 |
| [115] |
Urbina-Varela R, Soto-Espinoza MI, Vargas R, et al. Influence of BDNF genetic polymorphisms in the pathophysiology of aging-related diseases. Aging Dis. 2020;11(6):1513–1526. doi: 10.14336/AD.2020.0310 |
| [116] |
Urbina-Varela R., Soto-Espinoza M.I., Vargas R., et al. Influence of BDNF genetic polymorphisms in the pathophysiology of aging-related diseases // Aging Dis. 2020. Vol. 11, N 6. P. 1513–1526. doi: 10.14336/AD.2020.0310 |
| [117] |
Wong J, Webster MJ, Cassano H, Weickert CS. Changes in alternative brain-derived neurotrophic factor transcript expression in the developing human prefrontal cortex. Eur J Neurosci. 2009;29(7):1311–1322. doi: 10.1111/j.1460-9568.2009.06669.x |
| [118] |
Wong J., Webster M.J., Cassano H., Weickert C.S. Changes in alternative brain-derived neurotrophic factor transcript expression in the developing human prefrontal cortex // Eur J Neurosci. 2009. Vol. 29, N 7. P. 1311–1322. doi: 10.1111/j.1460-9568.2009.06669.x |
| [119] |
KhorshidAhmad T, Acosta C, Cortes C, et al. Transcriptional regulation of brain-derived neurotrophic factor (BDNF) by methyl CpG binding protein 2 (MeCP2): a novel mechanism for re-myelination and/or myelin repair involved in the treatment of multiple sclerosis (MS). Mol Neurobiol. 2016;53(2):1092–1107. doi: 10.1007/s12035-014-9074-1 |
| [120] |
KhorshidAhmad T., Acosta C., Cortes C., et al. Transcriptional regulation of brain-derived neurotrophic factor (BDNF) by methyl CpG binding protein 2 (MeCP2): a novel mechanism for Re-myelination and/or myelin repair involved in the treatment of multiple sclerosis (MS) // Mol Neurobiol. 2016. Vol. 53, N 2. P. 1092–1107. doi: 10.1007/s12035-014-9074-1 |
| [121] |
Keller S, Sarchiapone M, Zarrilli F, et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry. 2010;67(3):258–267. doi: 10.1001/archgenpsychiatry.2010.9 |
| [122] |
Keller S., Sarchiapone M., Zarrilli F., et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects // Arch Gen Psychiatry. 2010. Vol. 67, N 3. P. 258–267. doi: 10.1001/archgenpsychiatry.2010.9 |
| [123] |
Treble-Barna A, Heinsberg LW, Stec Z, et al. Brain-derived neurotrophic factor (BDNF) epigenomic modifications and brain-related phenotypes in humans: a systematic review. Neurosci Biobehav Rev. 2023;147:105078. doi: 10.1016/j.neubiorev.2023.105078 |
| [124] |
Treble-Barna A., Heinsberg L.W., Stec Z., et al. Brain-derived neurotrophic factor (BDNF) epigenomic modifications and brain-related phenotypes in humans: a systematic review // Neurosci Biobehav Rev. 2023. Vol. 147. P. 105078. doi: 10.1016/j.neubiorev.2023.105078 |
| [125] |
Sartor GC, Malvezzi AM, Kumar A, et al. Enhancement of BDNF expression and memory by HDAC inhibition requires BET bromodomain reader proteins. J Neurosci. 2019;39(4):612–626. Corrected and republished from: J Neurosci. 2020;40(6):1366. doi: 10.1523/JNEUROSCI.1604-18.2018 |
| [126] |
Sartor G.C., Malvezzi A.M., Kumar A., et al. Enhancement of BDNF expression and memory by HDAC inhibition requires BET bromodomain reader proteins // J Neurosci. 2019. Vol. 39, N 4. P. 612–626. Corrected and republished from: J Neurosci. 2020. Vol. 40, N 6. P. 1366. doi: 10.1523/JNEUROSCI.1604-18.2018 |
| [127] |
Keifer J, Zheng Z, Ambigapathy G. A MicroRNA-BDNF negative feedback signaling loop in brain: implications for Alzheimer’s disease. Microrna. 2015;4(2):101–108. doi: 10.2174/2211536604666150813152620 |
| [128] |
Keifer J., Zheng Z., Ambigapathy G. A microRNA-BDNF negative feedback signaling loop in brain: implications for Alzheimer’s disease // Microrna. 2015. Vol. 4, N 2. P. 101–108. doi: 10.2174/2211536604666150813152620 |
| [129] |
Wang L, Liu Y, Song J. MicroRNA-103 suppresses glioma cell proliferation and invasion by targeting the brain-derived neurotrophic factor. Mol Med Rep. 2018;17(3):4083–4089. doi: 10.3892/mmr.2017.8282 |
| [130] |
Wang L., Liu Y., Song J. MicroRNA-103 suppresses glioma cell proliferation and invasion by targeting the brain-derived neurotrophic factor // Mol Med Rep. 2018. Vol. 17, N 3. P. 4083–4089. doi: 10.3892/mmr.2017.8282 |
| [131] |
Khani-Habibabadi F, Askari S, Zahiri J, et al. Novel BDNF-regulatory microRNAs in neurodegenerative disorders pathogenesis: an in silico study. Comput Biol Chem. 2019;83:107153. doi: 10.1016/j.compbiolchem.2019.107153 |
| [132] |
Khani-Habibabadi F., Askari S., Zahiri J., et al. Novel BDNF-regulatory microRNAs in neurodegenerative disorders pathogenesis: an in silico study // Comput Biol Chem. 2019. Vol. 83. P. 107153. doi: 10.1016/j.compbiolchem.2019.107153 |
| [133] |
Ren J, Huang HJ, Gong Y, et al. MicroRNA-206 suppresses gastric cancer cell growth and metastasis. Cell Biosci. 2014;4:26. doi: 10.1186/2045-3701-4-26 |
| [134] |
Ren J., Huang H.J., Gong Y., et al. MicroRNA-206 suppresses gastric cancer cell growth and metastasis // Cell Biosci. 2014. Vol. 4. P. 26. doi: 10.1186/2045-3701-4-26 |
| [135] |
Miura P, Amirouche A, Clow C, et al. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J Neurochem. 2012;120(2):230–238. doi: 10.1111/j.1471-4159.2011.07583.x |
| [136] |
Miura P., Amirouche A., Clow C., et al. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206 // J Neurochem. 2012. Vol. 120, N 2. P. 230–238. doi: 10.1111/j.1471-4159.2011.07583.x |
| [137] |
Zhang T, Liu C, Chi L. Suppression of miR-10a-5p in bone marrow mesenchymal stem cells enhances the therapeutic effect on spinal cord injury via BDNF. Neurosci Lett. 2020;714:134562. doi: 10.1016/j.neulet.2019.134562 |
| [138] |
Zhang T., Liu C., Chi L. Suppression of miR-10a-5p in bone marrow mesenchymal stem cells enhances the therapeutic effect on spinal cord injury via BDNF // Neurosci Lett. 2020. Vol. 714. P. 134562. doi: 10.1016/j.neulet.2019.134562 |
| [139] |
Ghafouri-Fard S, Khoshbakht T, Taheri M, Ghanbari M. A concise review on the role of BDNF-AS in human disorders. Biomed Pharmacother. 2021;142:112051. doi: 10.1016/j.biopha.2021.112051 |
| [140] |
Ghafouri-Fard S., Khoshbakht T., Taheri M., Ghanbari M. A concise review on the role of BDNF-AS in human disorders // Biomed Pharmacother. 2021. Vol. 142. P. 112051. doi: 10.1016/j.biopha.2021.112051 |
| [141] |
Brigadski T, Leßmann V. The physiology of regulated BDNF release. Cell Tissue Res. 2020;382(1):15–45. doi: 10.1007/s00441-020-03253-2 |
| [142] |
Brigadski T., Leßmann V. The physiology of regulated BDNF release // Cell Tissue Res. 2020. Vol. 382, N 1. P. 15–45. doi: 10.1007/s00441-020-03253-2 |
| [143] |
Benicky J, Sanda M, Brnakova Kennedy Z, Goldman R. N-Glycosylation is required for secretion of the precursor to brain-derived neurotrophic factor (proBDNF) carrying sulfated LacdiNAc structures. J Biol Chem. 2019;294(45):16816–16830. doi: 10.1074/jbc.RA119.009989 |
| [144] |
Benicky J., Sanda M., Brnakova Kennedy Z., Goldman R. N-Glycosylation is required for secretion of the precursor to brain-derived neurotrophic factor (proBDNF) carrying sulfated LacdiNAc structures // J Biol Chem. 2019. Vol. 294, N 45. P. 16816–16830. doi: 10.1074/jbc.RA119.009989 |
| [145] |
Keifer J, Sabirzhanov BE, Zheng Z, et al. Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning. J Neurosci. 2009;29(47):14956–14964. doi: 10.1523/JNEUROSCI.3649-09.2009 |
| [146] |
Keifer J., Sabirzhanov B.E., Zheng Z., et al. Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning // J Neurosci. 2009. Vol. 29, N 47. P. 14956–14964. doi: 10.1523/JNEUROSCI.3649-09.2009 |
| [147] |
Notaras M, van den Buuse M. Brain-derived neurotrophic factor (BDNF): novel insights into regulation and genetic variation. Neuroscientist. 2019;25(5):434–454. doi: 10.1177/1073858418810142 |
| [148] |
Notaras M., van den Buuse M. Brain-derived neurotrophic factor (BDNF): novel insights into regulation and genetic variation // Neuroscientist. 2019. Vol. 25, N 5. P. 434–454. doi: 10.1177/1073858418810142 |
| [149] |
Cain SW, Chang AM, Vlasac I, et al. Circadian rhythms in plasma brain-derived neurotrophic factor differ in men and women. J Biol Rhythms. 2017;32(1):75–82. doi: 10.1177/0748730417693124 |
| [150] |
Cain S.W., Chang A.M., Vlasac I., et al. Circadian rhythms in plasma brain-derived neurotrophic factor differ in men and women // J Biol Rhythms. 2017. Vol. 32, N 1. P. 75–82. doi: 10.1177/0748730417693124 |
| [151] |
Shvaikovskaya AA, Zhanaeva SY, Evsyukova AV, et al. Brain neurotrophic factor (BDNF) and its diagnostic significance when measured in blood: analytical review. Yakut Medical Journal. 2020;(3):105–110. EDN: NXOSII doi: 10.25789/YMJ.2020.71.27 |
| [152] |
Швайковская А.А., Жанаева С.Я., Евсюкова А.В., и др. Нейротрофический фактор мозга (BDNF) и его диагностическая значимость при измерении в крови: аналитический обзор // Якутский медицинский журнал. 2020. № 3. С. 105–110. EDN: NXOSII doi: 10.25789/YMJ.2020.71.27 |
| [153] |
Sangiovanni E, Brivio P, Dell’Agli M, Calabrese F. Botanicals as modulators of neuroplasticity: focus on BDNF. Neural Plast. 2017;2017:5965371. doi: 10.1155/2017/5965371 |
| [154] |
Sangiovanni E., Brivio P., Dell’Agli M., Calabrese F. Botanicals as modulators of neuroplasticity: focus on BDNF // Neural Plast. 2017. Vol. 2017. P. 5965371. doi: 10.1155/2017/5965371 |
| [155] |
Liao GY, Xu H, Shumate J, et al. High throughput assay for compounds that boost BDNF expression in neurons. SLAS Discov. 2023;28(3):88–94. doi: 10.1016/j.slasd.2023.02.005 |
| [156] |
Liao G.Y., Xu H., Shumate J., et al. High throughput assay for compounds that boost BDNF expression in neurons // SLAS Discov. 2023. Vol. 28, N 3. P. 88–94. doi: 10.1016/j.slasd.2023.02.005 |
| [157] |
Soppet D, Escandon E, Maragos J, et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell. 1991;65(5):895–903. doi: 10.1016/0092-8674(91)90396-g |
| [158] |
Soppet D., Escandon E., Maragos J., et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor // Cell. 1991. Vol. 65, N 5. P. 895–903. doi: 10.1016/0092-8674(91)90396-g |
| [159] |
Pankiewicz P, Szybiński M, Kisielewska K, et al. Do small molecules activate the TrkB receptor in the same manner as BDNF? Limitations of published TrkB low molecular agonists and screening for novel TrkB orthosteric agonists. Pharmaceuticals (Basel). 2021;14(8):704. doi: 10.3390/ph14080704 |
| [160] |
Pankiewicz P., Szybiński M., Kisielewska K., et al. Do small molecules activate the TrkB receptor in the same manner as BDNF? Limitations of published TrkB low molecular agonists and screening for novel TrkB orthosteric agonists // Pharmaceuticals (Basel). 2021. Vol. 14, N 8. P. 704. doi: 10.3390/ph14080704 |
| [161] |
Kashyap MP, Roberts C, Waseem M, Tyagi P. Drug targets in neurotrophin signaling in the central and peripheral nervous system. Mol Neurobiol. 2018;55(8):6939–6955. doi: 10.1007/s12035-018-0885-3 |
| [162] |
Kashyap M.P., Roberts C., Waseem M., Tyagi P. Drug targets in neurotrophin signaling in the central and peripheral nervous system // Mol Neurobiol. 2018. Vol. 55, N 8. P. 6939–6955. doi: 10.1007/s12035-018-0885-3 |
| [163] |
Hallböök F, Ibáñez CF, Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron. 1991;6(5):845–858. doi: 10.1016/0896-6273(91)90180-8 |
| [164] |
Hallböök F., Ibáñez C.F., Persson H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary // Neuron. 1991. Vol. 6, N 5. P. 845–858. doi: 10.1016/0896-6273(91)90180-8 |
| [165] |
Teng HK, Teng KK, Lee R, et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 2005;25(22):5455–5463. doi: 10.1523/JNEUROSCI.5123-04.2005 |
| [166] |
Teng H.K., Teng K.K., Lee R., et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin // J Neurosci. 2005. Vol. 25, N 22. P. 5455–5463. doi: 10.1523/JNEUROSCI.5123-04.2005 |
| [167] |
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363. doi: 10.3389/fncel.2019.00363 |
| [168] |
Miranda M., Morici J.F., Zanoni M.B., Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain // Front Cell Neurosci. 2019. Vol. 13. P. 363. doi: 10.3389/fncel.2019.00363 |
| [169] |
Bekinschtein P, von Bohlen Und Halbach O. Cellular and molecular mechanisms of neurotrophin function in the nervous system. Front Cell Neurosci. 2020;14:101. doi: 10.3389/fncel.2020.00101 |
| [170] |
Bekinschtein P., von Bohlen Und Halbach O. Editorial: cellular and molecular mechanisms of neurotrophin function in the nervous system // Front Cell Neurosci. 2020. Vol. 14. P. 101. doi: 10.3389/fncel.2020.00101 |
| [171] |
Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature. 1996;383(6602):716–719. doi: 10.1038/383716a0 |
| [172] |
Casaccia-Bonnefil P., Carter B.D., Dobrowsky R.T., Chao M.V. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75 // Nature. 1996. Vol. 383, N 6602. P. 716–719. doi: 10.1038/383716a0 |
| [173] |
Frade JM, Rodríguez-Tébar A, Barde YA. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature. 1996;383(6596):166–168. doi: 10.1038/383166a0 |
| [174] |
Frade J.M., Rodríguez-Tébar A., Barde Y.A. Induction of cell death by endogenous nerve growth factor through its p75 receptor // Nature. 1996. Vol. 383, N 6596. P. 166–168. doi: 10.1038/383166a0 |
| [175] |
Schott BH, Kronenberg G, Schmidt U, et al. Robustly high hippocampal BDNF levels under acute stress in mice lacking the full-length p75 neurotrophin receptor. Pharmacopsychiatry. 2021;54(5):205–213. doi: 10.1055/a-1363-1680 |
| [176] |
Schott B.H., Kronenberg G., Schmidt U., et al. Robustly high hippocampal BDNF levels under acute stress in mice lacking the full-length p75 neurotrophin receptor // Pharmacopsychiatry. 2021. Vol. 54, N 05. P. P. 205–213. doi: 10.1055/a-1363-1680 |
| [177] |
Skeldal S, Sykes AM, Glerup S, et al. Mapping of the interaction site between sortilin and the p75 neurotrophin receptor reveals a regulatory role for the sortilin intracellular domain in p75 neurotrophin receptor shedding and apoptosis. J Biol Chem. 2012;287(52):43798–43809. doi: 10.1074/jbc.M112.374710 |
| [178] |
Skeldal S., Sykes A.M., Glerup S., et al. Mapping of the interaction site between sortilin and the p75 neurotrophin receptor reveals a regulatory role for the sortilin intracellular domain in p75 neurotrophin receptor shedding and apoptosis // J Biol Chem. 2012. Vol. 287, N 52. P. 43798–43809. doi: 10.1074/jbc.M112.374710 |
| [179] |
Foltran RB, Stefani KM, Bonafina A, et al. Differential hippocampal expression of BDNF isoforms and their receptors under diverse configurations of the serotonergic system in a mice model of increased neuronal survival. Front Cell Neurosci. 2019;13:384. doi: 10.3389/fncel.2019.00384 |
| [180] |
Foltran R.B., Stefani K.M., Bonafina A., et al. Differential hippocampal expression of BDNF isoforms and their receptors under diverse configurations of the serotonergic system in a mice model of increased neuronal survival // Front Cell Neurosci. 2019. Vol. 13. P. 384. doi: 10.3389/fncel.2019.00384 |
| [181] |
Cahoy JD, Emery B, Kaushal A, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28(1):264–278. doi: 10.1523/JNEUROSCI.4178-07.2008 |
| [182] |
Cahoy J.D., Emery B., Kaushal A., et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function // J Neurosci. 2008. Vol. 28, N 1. P. 264–278. doi: 10.1523/JNEUROSCI.4178-07.2008 |
| [183] |
Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 2003;4(4):299–309. doi: 10.1038/nrn1078 |
| [184] |
Chao M.V. Neurotrophins and their receptors: a convergence point for many signalling pathways // Nat Rev Neurosci. 2003. Vol. 4, N 4. P. 299–309. doi: 10.1038/nrn1078 |
| [185] |
Du Y, Fischer TZ, Lee LN, et al. Regionally specific effects of BDNF on oligodendrocytes. Dev Neurosci. 2003;25(2-4):116–126. doi: 10.1159/000072261 |
| [186] |
Du Y., Fischer T.Z., Lee L.N., et al. Regionally specific effects of BDNF on oligodendrocytes // Dev Neurosci. 2003. Vol. 25, N 2-4. P. 116–126. doi: 10.1159/000072261 |
| [187] |
Yi LT, Wang SS, Cheng J, et al. Sustained AMP-activated protein kinase activation attenuates the activity of brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in mice exposed to chronic stress. Chin Med J (Engl). 2021;134(15):1874–1876. doi: 10.1097/CM9.0000000000001323 |
| [188] |
Yi L.T., Wang S.S., Cheng J., et al. Sustained AMP-activated protein kinase activation attenuates the activity of brain-derived neurotrophic factor/tyrosine kinase receptor B signaling in mice exposed to chronic stress // Chin Med J (Engl). 2021. Vol. 134, N 15. P. 1874–1876. doi: 10.1097/CM9.0000000000001323 |
| [189] |
Eide FF, Vining ER, Eide BL, et al. Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci. 1996;16(10):3123–3129. doi: 10.1523/JNEUROSCI.16-10-03123.1996 |
| [190] |
Eide F.F., Vining E.R., Eide B.L., et al. Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling // J Neurosci. 1996. Vol. 16, N 10. P. 3123–3129. doi: 10.1523/JNEUROSCI.16-10-03123.1996 |
| [191] |
Zahavi EE, Steinberg N, Altman T, et al. The receptor tyrosine kinase TrkB signals without dimerization at the plasma membrane. Sci Signal. 2018;11(529):eaao4006. doi: 10.1126/scisignal.aao4006 |
| [192] |
Zahavi E.E., Steinberg N., Altman T., et al. The receptor tyrosine kinase TrkB signals without dimerization at the plasma membrane // Sci Signal. 2018. Vol. 11, N 529. P. eaao4006. doi: 10.1126/scisignal.aao4006 |
| [193] |
Xiao J, Wong AW, Willingham MM, et al. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes. Neurosignals. 2010;18(3):186–202. doi: 10.1159/000323170 |
| [194] |
Xiao J., Wong A.W., Willingham M.M., et al. Brain-derived neurotrophic factor promotes central nervous system myelination via a direct effect upon oligodendrocytes // Neurosignals. 2011. Vol. 18, N 3. P. 186–202. doi: 10.1159/000323170 |
| [195] |
Chen G, Luo X, Wang W, et al. Interleukin-1β Promotes schwann cells de-differentiation in wallerian degeneration via the c-JUN/AP-1 pathway. Front Cell Neurosci. 2019;13:304. doi: 10.3389/fncel.2019.00304 |
| [196] |
Chen G., Luo X., Wang W., et al. Interleukin-1β promotes Schwann cells de-differentiation in wallerian degeneration via the c-JUN/AP-1 pathway // Front Cell Neurosci. 2019. Vol. 13. P. 304. doi: 10.3389/fncel.2019.00304 |
| [197] |
Van’t Veer A, Du Y, Fischer TZ, et al. Brain-derived neurotrophic factor effects on oligodendrocyte progenitors of the basal forebrain are mediated through trkB and the MAP kinase pathway. J Neurosci Res. 2009;87(1):69–78. doi: 10.1002/jnr.21841 |
| [198] |
Van’t Veer A., Du Y., Fischer T.Z., et al. Brain-derived neurotrophic factor effects on oligodendrocyte progenitors of the basal forebrain are mediated through trkB and the MAP kinase pathway // J Neurosci Res. 2009. Vol. 87, N 1. P. 69–78. doi: 10.1002/jnr.21841 |
| [199] |
Gonzalez MC, Radiske A, Cammarota M. On the involvement of BDNF signaling in memory reconsolidation. Front Cell Neurosci. 2019;13:383. doi: 10.3389/fncel.2019.00383 |
| [200] |
Gonzalez M.C., Radiske A., Cammarota M. On the involvement of BDNF signaling in memory reconsolidation // Front Cell Neurosci. 2019. Vol. 13. P. 383. doi: 10.3389/fncel.2019.00383 |
| [201] |
Klein R, Smeyne RJ, Wurst W, et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell. 1993;75(1):113–122. |
| [202] |
Klein R., Smeyne R.J., Wurst W., et al. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death // Cell. 1993. Vol. 75, N 1. P. 113–122. |
| [203] |
Luikart BW, Nef S, Shipman T, Parada LF. In vivo role of truncated trkb receptors during sensory ganglion neurogenesis. Neuroscience. 2003;117(4):847–858. doi: 10.1016/s0306-4522(02)00719-4 |
| [204] |
Luikart B.W., Nef S., Shipman T., Parada L.F. In vivo role of truncated trkb receptors during sensory ganglion neurogenesis // Neuroscience. 2003. Vol. 117, N 4. P. 847–858. doi: 10.1016/s0306-4522(02)00719-4 |
| [205] |
Medina DL, Sciarretta C, Calella AM, et al. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. EMBO J. 2004;23(19):3803–3814. doi: 10.1038/sj.emboj.7600399 |
| [206] |
Medina D.L., Sciarretta C., Calella A.M., et al. TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration // EMBO J. 2004. Vol. 23, N 19. P. 3803–3814. doi: 10.1038/sj.emboj.7600399 |
| [207] |
Antonijevic M, Dallemagne P, Rochais C. Inducing neuronal regeneration and differentiation via the BDNF/TrkB signaling pathway: a key target against neurodegenerative diseases? Neural Regen Res. 2024;19(3):495–496. doi: 10.4103/1673-5374.380896 |
| [208] |
Antonijevic M., Dallemagne P., Rochais C. Inducing neuronal regeneration and differentiation via the BDNF/TrkB signaling pathway: a key target against neurodegenerative diseases? // Neural Regen Res. 2024. Vol. 19, N 3. P. 495–496. doi: 10.4103/1673-5374.380896 |
| [209] |
Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677 |
| [210] |
Huang E.J., Reichardt L.F. Neurotrophins: roles in neuronal development and function // Annu Rev Neurosci. 2001. Vol. 24. P. 677–736. doi: 10.1146/annurev.neuro.24.1.677 |
| [211] |
Chew LJ, Coley W, Cheng Y, Gallo V. Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase. J Neurosci. 2010;30(33):11011–11027. doi: 10.1523/JNEUROSCI.2546-10.2010 |
| [212] |
Chew L.J., Coley W., Cheng Y., Gallo V. Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase // J Neurosci. 2010. Vol. 30, N 33. P. 11011–11027. doi: 10.1523/JNEUROSCI.2546-10.2010 |
| [213] |
Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH. The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci. 2011;31(3):843–850. doi: 10.1523/JNEUROSCI.3239-10.2011 |
| [214] |
Fyffe-Maricich S.L., Karlo J.C., Landreth G.E., Miller R.H. The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation // J Neurosci. 2011. Vol. 31, N 3. P. 843–850. doi: 10.1523/JNEUROSCI.3239-10.2011 |
| [215] |
Ishii A, Fyffe-Maricich SL, Furusho M, et al. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J Neurosci. 2012;32(26):8855–8864. doi: 10.1523/JNEUROSCI.0137-12.2012 |
| [216] |
Ishii A., Fyffe-Maricich S.L., Furusho M., et al. ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination // J Neurosci. 2012. Vol. 32, N 26. P. 8855–8864. doi: 10.1523/JNEUROSCI.0137-12.2012 |
| [217] |
Ishii A, Furusho M, Bansal R. Sustained activation of ERK1/2 MAPK in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion. J Neurosci. 2013;33(1):175–186. doi: 10.1523/JNEUROSCI.4403-12.2013 |
| [218] |
Ishii A., Furusho M., Bansal R. Sustained activation of ERK1/2 MAPK in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion // J Neurosci. 2013. Vol. 33, N 1. P. 175–186. doi: 10.1523/JNEUROSCI.4403-12.2013 |
| [219] |
Wood TL, Bercury KK, Cifelli SE, et al. mTOR: a link from the extracellular milieu to transcriptional regulation of oligodendrocyte development. ASN Neuro. 2013;5(1):e00108. doi: 10.1042/AN20120092 |
| [220] |
Wood T.L., Bercury K.K., Cifelli S.E., et al. mTOR: a link from the extracellular milieu to transcriptional regulation of oligodendrocyte development // ASN Neuro. 2013. Vol. 5, N 1. P. e00108. doi: 10.1042/AN20120092 |
| [221] |
Xiao J, Ferner AH, Wong AW, et al. Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro. J Neurochem. 2012;122(6):1167–1180. doi: 10.1111/j.1471-4159.2012.07871.x |
| [222] |
Xiao J., Ferner A.H., Wong A.W., et al. Extracellular signal-regulated kinase 1/2 signaling promotes oligodendrocyte myelination in vitro // J Neurochem. 2012. Vol. 122, N 6. P. 1167–1180. doi: 10.1111/j.1471-4159.2012.07871.x |
| [223] |
Ishii A, Furusho M, Dupree JL, Bansal R. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS. J Neurosci. 2014;34(48):16031–16045. doi: 10.1523/JNEUROSCI.3360-14.2014 |
| [224] |
Ishii A., Furusho M., Dupree J.L., Bansal R. Role of ERK1/2 MAPK signaling in the maintenance of myelin and axonal integrity in the adult CNS // J Neurosci. 2014. Vol. 34, N 48. P. 16031–16045. doi: 10.1523/JNEUROSCI.3360-14.2014 |
| [225] |
Lu X, Liu H, Cai Z, et al. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation. Brain Behav Immun. 2022;106:147–160. doi: 10.1016/j.bbi.2022.08.005 |
| [226] |
Lu X., Liu H., Cai Z., et al. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation // Brain Behav Immun. 2022. Vol. 106. P. 147–160. doi: 10.1016/j.bbi.2022.08.005 |
| [227] |
Fath J, Brouillard F, Cabaye A, et al. A receptor-independent signaling pathway for BDNF. bioRxiv. 2022. doi: 10.1101/2022.08.23.504973 |
| [228] |
Fath J., Brouillard F., Cabaye A., et al. A receptor-independent signaling pathway for BDNF // bioRxiv. 2022. doi: 10.1101/2022.08.23.504973 |
| [229] |
Kärkkäinen V, Pomeshchik Y, Savchenko E, et al. Nrf2 regulates neurogenesis and protects neural progenitor cells against Aβ toxicity. Stem Cells. 2014;32(7):1904–1916. doi: 10.1002/stem.1666 |
| [230] |
Kärkkäinen V., Pomeshchik Y., Savchenko E., et al. Nrf2 regulates neurogenesis and protects neural progenitor cells against Aβ toxicity // Stem Cells. 2014. Vol. 32, N 7. P. 1904–1916. doi: 10.1002/stem.1666 |
| [231] |
Kashyap MP, Pore SK, de Groat WC, et al. BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity. Am J Physiol Renal Physiol. 2018;315(1):F45–F56. doi: 10.1152/ajprenal.00386.2017 |
| [232] |
Kashyap M.P., Pore S.K., de Groat W.C., et al. BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity // Am J Physiol Renal Physiol. 2018. Vol. 315, N 1. P. F45–F56. doi: 10.1152/ajprenal.00386.2017 |
| [233] |
Wang X, Hu Z, Zhong K. The role of brain-derived neurotrophic factor in epileptogenesis: an update. Front Pharmacol. 2021;12:758232. doi: 10.3389/fphar.2021.758232 |
| [234] |
Wang X., Hu Z., Zhong K. The role of brain-derived neurotrophic factor in epileptogenesis: an update // Front Pharmacol. 2021. Vol. 12. P. 758232. doi: 10.3389/fphar.2021.758232 |
| [235] |
Papaleo F, Silverman JL, Aney J, et al. Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice. Learn Mem. 2011;18(8):534–544. doi: 10.1101/lm.2213711 |
| [236] |
Papaleo F., Silverman J.L., Aney J., et al. Working memory deficits, increased anxiety-like traits, and seizure susceptibility in BDNF overexpressing mice // Learn Mem. 2011. Vol. 18, N 8. P. 534–544. doi: 10.1101/lm.2213711 |
| [237] |
Langhnoja J, Buch L, Pillai P. Potential role of NGF, BDNF, and their receptors in oligodendrocytes differentiation from neural stem cell: an in vitro study. Cell Biol Int. 2021;45(2):432–446. doi: 10.1002/cbin.11500 |
| [238] |
Langhnoja J., Buch L., Pillai P.. Potential role of NGF, BDNF, and their receptors in oligodendrocytes differentiation from neural stem cell: an in vitro study // Cell Biol Int. 2021. Vol. 45, N 2. P. 432–446. doi: 10.1002/cbin.11500 |
| [239] |
Soltys J, Perrone C, Knight J, Mao-Draayer Y. PDGF-AA and BDNF promote neural stem cell differentiation. J Neurol Neurophysiol. 2011;S4. doi: 10.4172/2155-9562.S4-002 |
| [240] |
Soltys J., Perrone C., Knight J., Mao-Draayer Y. PDGF-AA and BDNF promote neural stem cell differentiation // J Neurol Neurophysiol. 2011. P. S4. doi: 10.4172/2155-9562.S4-002 |
| [241] |
Lin L, Yuan J, Sander B, Golas MM. In vitro differentiation of human neural progenitor cells into striatal GABAergic neurons. Stem Cells Transl Med. 2015;4(7):775–788. doi: 10.5966/sctm.2014-0083 |
| [242] |
Lin L., Yuan J., Sander B., Golas M.M. In vitro differentiation of human neural progenitor cells into striatal GABAergic neurons // Stem Cells Transl Med. 2015. Vol. 4, N 7. P. 775–788. doi: 10.5966/sctm.2014-0083 |
| [243] |
Voronkov DN, Stavrovskaya AV, Lebedeva OS, et al. Morphological changes in neural progenitors derived from human induced pluripotent stem cells and transplanted into the striatum of a parkinson’s disease rat model. Annals of Clinical and Experimental Neurology. 2023;17(2):43–50. EDN: PTPTRB doi: 10.54101/ACEN.2023.2.6 |
| [244] |
Воронков Д.Н., Ставровская А.В., Лебедева О.С., и др. Морфологические изменения нейрональных предшественников, полученных из индуцированных плюрипотентных стволовых клеток человека и трансплантированных в стриатум крыс с моделью болезни Паркинсона // Анналы клинической и экспериментальной неврологии. 2023. Т. 17, № 2. C. 43–50. EDN: PTPTRB doi: 10.54101/ACEN.2023.2.6 |
| [245] |
Namestnikova DD, Gubskiy IL, Revkova VA, et al. Intra-arterial stem cell transplantation in experimental stroke in rats: real-time MR visualization of transplanted cells starting with their first pass through the brain with regard to the therapeutic action. Front Neurosci. 2021;15:641970. doi: 10.3389/fnins.2021.641970 |
| [246] |
Namestnikova D.D., Gubskiy I.L., Revkova V.A., et al. Intra-arterial stem cell transplantation in experimental stroke in rats: real-time MR visualization of transplanted cells starting with their first pass through the brain with regard to the therapeutic action // Front Neurosci. 2021. Vol. 15. P. 641970. doi: 10.3389/fnins.2021.641970 |
| [247] |
Chen S-Q, Zhang F, Liu C-L, et al. A promotional role of BDNF in pluripotent stem cells neural differentiation via Wnt/β-Catenin and ERK/MAPK signaling pathways. Ann Stem Cell Res Ther. 2018;2(4):1022. |
| [248] |
Chen S.-Q., Zhang F., Liu C.-L., et al. A promotional role of BDNF in pluripotent stem cells neural differentiation via Wnt/β-catenin and ERK/MAPK signaling pathways // Ann Stem Cell Res Ther. 2018. Vol. 2, N 4. P. 1022. |
| [249] |
Shi J, Longo FM, Massa SM. A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury. Stem Cells. 2013;31(11):2561–2574. doi: 10.1002/stem.1516 |
| [250] |
Shi J., Longo F.M., Massa S.M. A small molecule p75(NTR) ligand protects neurogenesis after traumatic brain injury // Stem Cells. 2013. Vol. 31, N 11. P. 2561–2574. doi: 10.1002/stem.1516 |
| [251] |
Hosomi S, Yamashita T, Aoki M, Tohyama M. The p75 receptor is required for BDNF-induced differentiation of neural precursor cells. Biochem Biophys Res Commun. 2003;301(4):1011–1015. doi: 10.1016/s0006-291x(03)00077-9 |
| [252] |
Hosomi S., Yamashita T., Aoki M., Tohyama M. The p75 receptor is required for BDNF-induced differentiation of neural precursor cells // Biochem Biophys Res Commun. 2003. Vol. 301, N 4. P. 1011–1015. doi: 10.1016/s0006-291x(03)00077-9 |
| [253] |
Gao Y, Li H, Qin C, et al. Embryonic stem cells-derived exosomes enhance retrodifferentiation of retinal Müller cells by delivering BDNF protein to activate Wnt pathway. Immunobiology. 2022;227(3):152211. doi: 10.1016/j.imbio.2022.152211 |
| [254] |
Gao Y., Li H., Qin C., et al. Embryonic stem cells-derived exosomes enhance retrodifferentiation of retinal Müller cells by delivering BDNF protein to activate Wnt pathway // Immunobiology. 2022. Vol. 227, N 3. P. 152211. doi: 10.1016/j.imbio.2022.152211 |
| [255] |
Thakurela S, Tiwari N, Schick S, et al. Mapping gene regulatory circuitry of Pax6 during neurogenesis. Cell Discov. 2016;2:15045. doi: 10.1038/celldisc.2015.45 |
| [256] |
Thakurela S., Tiwari N., Schick S., et al. Mapping gene regulatory circuitry of Pax6 during neurogenesis // Cell Discov. 2016. Vol. 2. P. 15045. doi: 10.1038/celldisc.2015.45 |
| [257] |
Zhang F, Liu CL, Tong MM, et al. Both Wnt/β-catenin and ERK5 signaling pathways are involved in BDNF-induced differentiation of pluripotent stem cells into neural stem cells. Neurosci Lett. 2019;708:134345. doi: 10.1016/j.neulet.2019.134345 |
| [258] |
Zhang F., Liu C.L., Tong M.M., et al. Both Wnt/β-catenin and ERK5 signaling pathways are involved in BDNF-induced differentiation of pluripotent stem cells into neural stem cells // Neurosci Lett. 2019. Vol. 708. P. 134345. doi: 10.1016/j.neulet.2019.134345 |
| [259] |
Zhou L, Liu Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat Rev Nephrol. 2015;11(9):535–545. doi: 10.1038/nrneph.2015.88 |
| [260] |
Zhou L., Liu Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease // Nat Rev Nephrol. 2015. Vol. 11, N 9. P. 535–545. doi: 10.1038/nrneph.2015.88 |
| [261] |
Lin TC, Tsai YC, Chen YA, et al. Brain-derived neurotrophic factor contributes to neurogenesis after intracerebral hemorrhage: a rodent model and human study. Front Cell Neurosci. 2023;17:1170251. doi: 10.3389/fncel.2023.1170251 |
| [262] |
Lin T.C., Tsai Y.C., Chen Y.A., et al. Brain-derived neurotrophic factor contributes to neurogenesis after intracerebral hemorrhage: a rodent model and human study // Front Cell Neurosci. 2023. Vol. 17. P. 1170251. doi: 10.3389/fncel.2023.1170251 |
| [263] |
Cheng A, Wang S, Cai J, et al. Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev Biol. 2003;258(2):319–333. doi: 10.1016/s0012-1606(03)00120-9 |
| [264] |
Cheng A., Wang S., Cai J., et al. Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain // Dev Biol. 2003. Vol. 258, N 2. P. 319–333. doi: 10.1016/s0012-1606(03)00120-9 |
| [265] |
Arad M, Brown RA, Khatri R, et al. Direct differentiation of tonsillar biopsy-derived stem cells to the neuronal lineage. Cell Mol Biol Lett. 2021;26(1):38. doi: 10.1186/s11658-021-00279-4 |
| [266] |
Arad M., Brown R.A., Khatri R., et al. Direct differentiation of tonsillar biopsy-derived stem cells to the neuronal lineage // Cell Mol Biol Lett. 2021. Vol. 26, N 1. P. 38. doi: 10.1186/s11658-021-00279-4 |
| [267] |
Patel M, Moon HJ, Jung BK, Jeong B. Microsphere-incorporated hybrid thermogel for neuronal differentiation of tonsil derived mesenchymal stem cells. Adv Healthc Mater. 2015;4(10):1565–1574. doi: 10.1002/adhm.201500224 |
| [268] |
Patel M., Moon H.J., Jung B.K., Jeong B. Microsphere-incorporated hybrid thermogel for neuronal differentiation of tonsil derived mesenchymal stem cells // Adv Healthc Mater. 2015. Vol. 4, N 10. P. 1565–1574. doi: 10.1002/adhm.201500224 |
| [269] |
Song JH, Oh SY, Jo SA. Basic fibroblast growth factor induces cholinergic differentiation of tonsil-derived mesenchymal stem cells. Tissue Eng Regen Med. 2022;19(5):1063–1075. doi: 10.1007/s13770-022-00474-0 |
| [270] |
Song J.H., Oh S.Y., Jo S.A. Basic fibroblast growth factor induces cholinergic differentiation of tonsil-derived mesenchymal stem cells // Tissue Eng Regen Med. 2022. Vol. 19, N 5. P. 1063–1075. doi: 10.1007/s13770-022-00474-0 |
| [271] |
Reyes JH, O’Shea KS, Wys NL, et al. Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: in vitro and in vivo studies. J Neurosci. 2008;28(48):12622–12631. doi: 10.1523/JNEUROSCI.0563-08.2008 |
| [272] |
Reyes J.H., O’Shea K.S., Wys N.L., et al. Glutamatergic neuronal differentiation of mouse embryonic stem cells after transient expression of neurogenin 1 and treatment with BDNF and GDNF: in vitro and in vivo studies // J Neurosci. 2008. Vol. 28, N 48. P. 12622–12631. doi: 10.1523/JNEUROSCI.0563-08.2008 |
| [273] |
Liu F, Xuan A, Chen Y, et al. Combined effect of nerve growth factor and brain-derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Rep. 2014;10(4):1739–1745. doi: 10.3892/mmr.2014.2393 |
| [274] |
Liu F., Xuan A., Chen Y., et al. Combined effect of nerve growth factor and brain derived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms // Mol Med Rep. 2014. Vol. 10, N 4. P. 1739–1745. doi: 10.3892/mmr.2014.2393 |
| [275] |
Cascante A, Klum S, Biswas M, et al. Gene-specific methylation control of H3K9 and H3K36 on neurotrophic BDNF versus astroglial GFAP genes by KDM4A/C regulates neural stem cell differentiation. J Mol Biol. 2014;426(20):3467–3477. doi: 10.1016/j.jmb.2014.04.008 |
| [276] |
Cascante A., Klum S., Biswas M., et al. Gene-specific methylation control of H3K9 and H3K36 on neurotrophic BDNF versus astroglial GFAP genes by KDM4A/C regulates neural stem cell differentiation // J Mol Biol. 2014. Vol. 426, N 20. P. 3467–3477. doi: 10.1016/j.jmb.2014.04.008 |
| [277] |
Kim GU, Sung SE, Kang KK, et al. Therapeutic potential of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles for the treatment of spinal cord injury. Int J Mol Sci. 2021;22(24):13672. doi: 10.3390/ijms222413672 |
| [278] |
Kim G.U., Sung S.E., Kang K.K., et al. Therapeutic potential of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles for the treatment of spinal cord injury // Int J Mol Sci. 2021. Vol. 22, N 24. P. 13672. doi: 10.3390/ijms222413672 |
| [279] |
Kaminski N, Köster C, Mouloud Y, et al. Mesenchymal stromal cell-derived extracellular vesicles reduce neuroinflammation, promote neural cell proliferation and improve oligodendrocyte maturation in neonatal hypoxic-ischemic brain injury. Front Cell Neurosci. 2020;14:601176. doi: 10.3389/fncel.2020.601176 |
| [280] |
Kaminski N., Köster C., Mouloud Y., et al. Mesenchymal stromal cell-derived extracellular vesicles reduce neuroinflammation, promote neural cell proliferation and improve oligodendrocyte maturation in neonatal hypoxic-ischemic brain injury // Front Cell Neurosci. 2020. Vol. 14. P. 601176. doi: 10.3389/fncel.2020.601176 |
| [281] |
Ahn SY, Sung DK, Kim YE, et al. Brain-derived neurotropic factor mediates neuroprotection of mesenchymal stem cell-derived extracellular vesicles against severe intraventricular hemorrhage in newborn rats. Stem Cells Transl Med. 2021;10(3):374–384. doi: 10.1002/sctm.20-0301 |
| [282] |
Ahn S.Y., Sung D.K., Kim Y.E., et al. Brain-derived neurotrophic factor mediates neuroprotection of mesenchymal stem cell-derived extracellular vesicles against severe intraventricular hemorrhage in newborn rats // Stem Cells Transl Med. 2021. Vol. 10, N 3. P. 374–384. doi: 10.1002/sctm.20-0301 |
| [283] |
Li C, Xiao L, Liu X, et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia. 2013;61(5):732–749. doi: 10.1002/glia.22469 |
| [284] |
Li C., Xiao L., Liu X., et al. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination // Glia. 2013. Vol. 61, N 5. P. 732–749. doi: 10.1002/glia.22469 |
| [285] |
Guardiola-Diaz HM, Ishii A, Bansal R. Erk1/2 MAPK and mTOR signaling sequentially regulates progression through distinct stages of oligodendrocyte differentiation. Glia. 2012;60(3):476–486. doi: 10.1002/glia.22281 |
| [286] |
Guardiola-Diaz H.M., Ishii A., Bansal R. Erk1/2 MAPK and mTOR signaling sequentially regulates progression through distinct stages of oligodendrocyte differentiation // Glia. 2012. Vol. 60, N 3. P. 476–486. doi: 10.1002/glia.22281 |
| [287] |
Zhang Q, Liu G, Wu Y, et al. BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway. Molecules. 2011;16(12):10146–10156. doi: 10.3390/molecules161210146 |
| [288] |
Zhang Q., Liu G., Wu Y., et al. BDNF promotes EGF-induced proliferation and migration of human fetal neural stem/progenitor cells via the PI3K/Akt pathway // Molecules. 2011. Vol. 16, N 12. P. 10146–10156. doi: 10.3390/molecules161210146 |
| [289] |
Rivera AD, Pieropan F, Williams G, et al. Drug connectivity mapping and functional analysis reveal therapeutic small molecules that differentially modulate myelination. Biomed Pharmacother. 2022;145:112436. doi: 10.1016/j.biopha.2021.112436 |
| [290] |
Rivera A.D., Pieropan F., Williams G., et al. Drug connectivity mapping and functional analysis reveal therapeutic small molecules that differentially modulate myelination // Biomed Pharmacother. 2022. Vol. 145. P. 112436. doi: 10.1016/j.biopha.2021.112436 |
| [291] |
Du Y, Fischer TZ, Clinton-Luke P, et al. Distinct effects of p75 in mediating actions of neurotrophins on basal forebrain oligodendrocytes. Mol Cell Neurosci. 2006;31(2):366–375. doi: 10.1016/j.mcn.2005.11.001 |
| [292] |
Du Y., Fischer T.Z., Clinton-Luke P., et al. Distinct effects of p75 in mediating actions of neurotrophins on basal forebrain oligodendrocytes // Mol Cell Neurosci. 2006. Vol. 31, N 2. P. 366–375. doi: 10.1016/j.mcn.2005.11.001 |
| [293] |
Vondran MW, Clinton-Luke P, Honeywell JZ, Dreyfus CF. BDNF+/– mice exhibit deficits in oligodendrocyte lineage cells of the basal forebrain. Glia. 2010;58(7):848–856. doi: 10.1002/glia.20969 |
| [294] |
Vondran M.W., Clinton-Luke P., Honeywell J.Z., Dreyfus C.F. BDNF+/– mice exhibit deficits in oligodendrocyte lineage cells of the basal forebrain // Glia. 2010. Vol. 58, N 7. P. 848–856. doi: 10.1002/glia.20969 |
| [295] |
Miyamoto N, Maki T, Shindo A, et al. Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor. J Neurosci. 2015;35(41):14002–14008. doi: 10.1523/JNEUROSCI.1592-15.2015 |
| [296] |
Miyamoto N., Maki T., Shindo A., et al. Astrocytes promote oligodendrogenesis after white matter damage via brain-derived neurotrophic factor // J Neurosci. 2015. Vol. 35, N 41. P. 14002–14008. doi: 10.1523/JNEUROSCI.1592-15.2015 |
| [297] |
Ramos-Cejudo J, Gutiérrez-Fernández M, Otero-Ortega L, et al. Brain-derived neurotrophic factor administration mediated oligodendrocyte differentiation and myelin formation in subcortical ischemic stroke. Stroke. 2015;46(1):221–228. doi: 10.1161/STROKEAHA.114.006692 |
| [298] |
Ramos-Cejudo J., Gutiérrez-Fernández M., Otero-Ortega L., et al. Brain-derived neurotrophic factor administration mediated oligodendrocyte differentiation and myelin formation in subcortical ischemic stroke // Stroke. 2015. Vol. 46, N 1. P. 221–228. doi: 10.1161/STROKEAHA.114.006692 |
Eco-Vector
/
| 〈 |
|
〉 |