Immune cell balance as potential biomarker of progressing non-alcoholic fatty liver disease
Ludmila V. Topchieva , Irina V. Kurbatova , Olga P. Dudanova , Alina V. Vasileva , Galina A. Zhulai
Genes & Cells ›› 2024, Vol. 19 ›› Issue (1) : 105 -125.
Immune cell balance as potential biomarker of progressing non-alcoholic fatty liver disease
Nonalcoholic fatty liver disease (NAFLD) is a widespread chronic, slowly progressive metabolic multifactorial disease. It is represented by several clinical and morphological forms: steatosis, nonalcoholic steatohepatitis (NASH) (with or without fibrosis), and liver cirrhosis. The search for minimally invasive and cost-effective biomarkers of NAFLD is a key task in the diagnosis, staging of progression, and long-term monitoring of NAFLD. This article discusses the possibility of using immune cell balance as potential minimally invasive peripheral markers of NAFLD progression. In the progression of NASH from steatosis to fibrosis and cirrhosis, inflammation plays an important role because of the activation of Kupffer cells and increased migration of monocytes, dendritic cells, neutrophils, and activated T lymphocytes into the tissues. Macrophages originating from monocytes, with NASH progression, gradually begin to prevail over the pool of resident macrophages. The risk of NASH and fibrosis development in patients with NAFLD increases with the ratio of neutrophils/lymphocytes in the liver. An increase in the Th17 cell count and a decrease in T-regulatory cell count can contribute to increased hepatic steatosis and inflammation development in NAFLD and accelerate the transition from simple steatosis to steatohepatitis and fibrosis. Information on the participation of noncoding RNAs in the regulation of the balance of immune cells in NAFLD is presented, which also allows us to consider them as additional, along with cellular, markers of disease progression.
non-alcoholic fatty liver disease / biomarkers of NAFLD / liver fibrosis / immune cells
| [1] |
Lazebnik LB, Golovanova EV, Turkina SV, et al. Non-alcoholic fatty liver disease in adults: clinic, diagnostics, treatment. Guidelines for therapists, third version. Experimental and Clinical Gastroenterology Journal. 2021;(1):4–52. EDN: KJLOJV doi: 10.31146/1682-8658-ecg-185-1-4-52 |
| [2] |
Лазебник Л.Б., Голованова Е.В., Туркина С.В., и др. Неалкогольная жировая болезнь печени у взрослых: клиника, диагностика, лечение. Рекомендации для терапевтов, третья версия // Экспериментальная и клиническая гастроэнтерология. 2021. № 1. С. 4–52. EDN: KJLOJV doi: 10.31146/1682-8658-ecg-185-1-4-52 |
| [3] |
Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–2224. doi: 10.1016/S0140-6736(20)32511-3 |
| [4] |
Powell E.E., Wong V.W.S., Rinella M. Non-alcoholic fatty liver disease // Lancet. 2021. Vol. 397, N 10290. P. 2212–2224. doi: 10.1016/S0140-6736(20)32511-3 |
| [5] |
Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128(7):1898–1906. doi: 10.1053/j.gastro.2005.03.084 |
| [6] |
Ratziu V., Charlotte F., Heurtier A., et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease // Gastroenterology. 2005. Vol. 128, N 7. P. 1898–1906. doi: 10.1053/j.gastro.2005.03.084 |
| [7] |
Duvnjak M, Tomasic V, Gomercic M, et al. Therapy of nonalcoholic fatty liver disease: current status. J Physiol Pharmacol. 2009;60 Suppl. 7:57–66. |
| [8] |
Duvnjak M., Tomasic V., Gomercic M., et al. Therapy of nonalcoholic fatty liver disease: current status // J Physiol Pharmacol. 2009. Vol. 60, Suppl. 7. P. 57–66. |
| [9] |
Mancini M, Prinster A, Annuzzi G, et al. Sonographic hepatic-renal ratio as indicator of hepatic steatosis: comparison with 1H magnetic resonance spectroscopy. Metabolism. 2009;58(12):1724–1730. doi: 10.1016/j.metabol.2009.05.032 |
| [10] |
Mancini M., Prinster A., Annuzzi G., et al. Sonographic hepatic-renal ratio as indicator of hepatic steatosis: comparison with 1H magnetic resonance spectroscopy // Metabolism. 2009. Vol. 58, N 12. P. 1724–1730. doi: 10.1016/j.metabol.2009.05.032 |
| [11] |
Ajmera V, Loomba R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Mol Metab. 2021;50:101167. doi: 10.1016/j.molmet.2021.101167 |
| [12] |
Ajmera V., Loomba R. Imaging biomarkers of NAFLD, NASH, and fibrosis // Mol Metab. 2021. Vol. 50. P. 101167. doi: 10.1016/j.molmet.2021.101167 |
| [13] |
Bahcecioglu IH, Yalniz M, Ataseven H, et al. Levels of serum hyaluronic acid, TNF-alpha and IL-8 in patients with nonalcoholic steatohepatitis. Hepatogastroenterology. 2005;52(65):1549–1553. |
| [14] |
Bahcecioglu I.H., Yalniz M., Ataseven H., et al. Levels of serum hyaluronic acid, TNF-alpha and IL-8 in patients with nonalcoholic steatohepatitis // Hepatogastroenterology. 2005. Vol. 52, N 65. P. 1549–1553. |
| [15] |
Kwok R, Tse YK, Wong GLH, et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease — the role of transient elastography and plasma cytokeratin-18 fragments. Aliment Pharmacol Ther. 2014;39(3):254–269. doi: 10.1111/apt.12569 |
| [16] |
Kwok R., Tse Y.K., Wong G.L., et al. Systematic review with meta-analysis: non-invasive assessment of non-alcoholic fatty liver disease — the role of transient elastography and plasma cytokeratin-18 fragments // Aliment Pharmacol Ther. 2014. Vol. 39, N 3. P. 254–269. doi: 10.1111/apt.12569 |
| [17] |
Giannini C, Feldstein AE, Santoro N, et al. Circulating levels of FGF-21 in obese youth: associations with liver fat content and markers of liver damage. J Clin Endocrinol Metab. 2013;98(7):2993–3000. doi: 10.1210/jc.2013-1250 |
| [18] |
Giannini C., Feldstein A.E., Santoro N., et al. Circulating levels of FGF-21 in obese youth: associations with liver fat content and markers of liver damage // J Clin Endocrinol Metab. 2013. Vol. 98, N 7. P. 2993–3000. doi: 10.1210/jc.2013-1250 |
| [19] |
Tang LJ, Ma HL, Eslam M, et al. Among simple non-invasive scores, Pro-C3 and ADAPT best exclude advanced fibrosis in Asian patients with MAFLD. Metabolism. 2022;128:154958. doi: 10.1016/j.metabol.2021.154958 |
| [20] |
Tang L.J., Ma H.L., Eslam M., et al. Among simple non-invasive scores, Pro-C3 and ADAPT best exclude advanced fibrosis in Asian patients with MAFLD // Metabolism. 2022. Vol. 128. P. 154958. doi: 10.1016/j.metabol.2021.154958 |
| [21] |
Yoneda M, Mawatari H, Fujita K, et al. Type IV collagen 7s domain is an independent clinical marker of the severity of fibrosis in patients with nonalcoholic steatohepatitis before the cirrhotic stage. J Gastroenterol. 2007;42(5):375–381. doi: 10.1007/s00535-007-2014-3 |
| [22] |
Yoneda M., Mawatari H., Fujita K., et al. Type IV collagen 7s domain is an independent clinical marker of the severity of fibrosis in patients with nonalcoholic steatohepatitis before the cirrhotic stage // J Gastroenterol. 2007. Vol. 42, N 5. P. 375–381. doi: 10.1007/s00535-007-2014-3 |
| [23] |
Vallet-Pichard A, Mallet V, Nalpas B, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and FibroTest. Hepatology. 2007;46(1):32–36. doi: 10.1002/hep.21669 |
| [24] |
Vallet-Pichard A., Mallet V., Nalpas B., et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. Comparison with liver biopsy and FibroTest // Hepatology. 2007. Vol. 46, N 1. P. 32–36. doi: 10.1002/hep.21669 |
| [25] |
Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45(4):846–854. doi: 10.1002/hep.21496 |
| [26] |
Angulo P., Hui J.M., Marchesini G., et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD // Hepatology. 2007. Vol. 45, N 4. P. 846–854. doi: 10.1002/hep.21496 |
| [27] |
Wai CT, Greenson JK, Fontana RJ, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38(2):518–526. doi: 10.1053/jhep.2003.50346 |
| [28] |
Wai C.T., Greenson J.K., Fontana R.J., et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C // Hepatology. 2003. Vol. 38, N 2. P. 518–526. doi: 10.1053/jhep.2003.50346 |
| [29] |
Yilmaz Y, Dolar E, Ulukaya E, et al. Soluble forms of extracellular cytokeratin 18 may differentiate simple steatosis from nonalcoholic steatohepatitis. World J Gastroenterol. 2007;13(6):837–844. doi: 10.3748/wjg.v13.i6.837 |
| [30] |
Yilmaz Y., Dolar E., Ulukaya E., et al. Soluble forms of extracellular cytokeratin 18 may differentiate simple steatosis from nonalcoholic steatohepatitis // World J Gastroenterol. 2007. Vol. 13, N 6. P. 837–844. doi: 10.3748/wjg.v13.i6.837 |
| [31] |
Daniels SJ, Leeming DJ, Eslam M, et al. ADAPT: an algorithm incorporating PRO-C3 accurately identifies patients with NAFLD and advanced fibrosis. Hepatology. 2019;69(3):1075–1086. doi: 10.1002/hep.30163 |
| [32] |
Daniels S.J., Leeming D.J., Eslam M., et al. ADAPT: an algorithm incorporating PRO-C3 accurately identifies patients with NAFLD and advanced fibrosis // Hepatology. 2019. Vol. 69, N 3. P. 1075–1086. doi: 10.1002/hep.30163 |
| [33] |
Castera L, Friedrich-Rust M, Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156(5):1264–1281.e4. doi: 10.1053/j.gastro.2018.12.036 |
| [34] |
Castera L., Friedrich-Rust M., Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease // Gastroenterology. 2019. Vol. 156, N 5. P. 1264–1281. doi: 10.1053/j.gastro.2018.12.036 |
| [35] |
Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43(6):1317–1325. doi: 10.1002/hep.21178 |
| [36] |
Sterling R.K., Lissen E., Clumeck N., et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection // Hepatology. 2006. Vol. 43, N 6. P. 1317–1325. doi: 10.1002/hep.21178 |
| [37] |
Al-Qarni R, Iqbal M, Al-Otaibi M, et al. Validating candidate biomarkers for different stages of non-alcoholic fatty liver disease. Medicine (Baltimore). 2020;99(36):e21463. doi: 10.1097/MD.0000000000021463 |
| [38] |
Al-Qarni R., Iqbal M., Al-Otaibi M., et al. Validating candidate biomarkers for different stages of non-alcoholic fatty liver disease // Medicine (Baltimore). 2020. Vol. 99, N 36. P. e21463. doi: 10.1097/MD.0000000000021463 |
| [39] |
Watt J, Kurth MJ, Reid CN, et al. Non-alcoholic fatty liver disease — a pilot study investigating early inflammatory and fibrotic biomarkers of NAFLD with alcoholic liver disease. Front Physiol. 2022;15:13:963513. doi: 10.3389/fphys.2022.963513 |
| [40] |
Watt J., Kurth M.J., Reid C.N., et al. Non-alcoholic fatty liver disease — a pilot study investigating early inflammatory and fibrotic biomarkers of NAFLD with alcoholic liver disease // Front Physiol. 2022. Vol. 13. P. 963513. doi: 10.3389/fphys.2022.963513 |
| [41] |
Chen Z, Ke X, Wang X, et al. LncRNA JPX contributes to Treg/Th17 imbalance in allergic rhinitis via targeting the miR-378g/CCL5 axis. Immunopharmacol Immunotoxicol. 2022;44(4):519–524. doi: 10.1080/08923973.2022.2055566 |
| [42] |
Chen Z., Ke X., Wang X., et al. LncRNA JPX contributes to Treg/Th17 imbalance in allergic rhinitis via targeting the miR-378g/CCL5 axis // Immunopharmacol Immunotoxicol. 2022. Vol. 44, N 4. P. 519–524. doi: 10.1080/08923973.2022.2055566 |
| [43] |
Dongiovanni P, Meroni M, Longo M, et al. MiRNA signature in NAFLD: a turning point for a non-invasive diagnosis. Int J Mol Sci. 2018;19(12):3966. doi: 10.3390/ijms19123966 |
| [44] |
Dongiovanni P., Meroni M., Longo M., et al. MiRNA signature in NAFLD: a turning point for a non-invasive diagnosis // Int J Mol Sci. 2018. Vol. 19, N 12. P. 3966. doi: 10.3390/ijms19123966 |
| [45] |
Rohilla S, Kaur S, Puria R. Long non-coding RNA in non-alcoholic fatty liver disease. Adv Clin Chem. 2022;110:1–35. doi: 10.1016/bs.acc.2022.06.001 |
| [46] |
Rohilla S., Kaur S., Puria R. Long non-coding RNA in non-alcoholic fatty liver disease // Adv Clin Chem. 2022. Vol. 110. P. 1–35. doi: 10.1016/bs.acc.2022.06.001 |
| [47] |
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002 |
| [48] |
Bartel D.P. MicroRNAs: target recognition and regulatory functions // Cell. 2009. Vol. 136, N 2. P. 215–233. doi: 10.1016/j.cell.2009.01.002 |
| [49] |
Li Y, Jiang HT, Han LB, et al. MiR-195 regulates CD40 to maintain Th17/Treg balance in rats with non-alcoholic fatty liver disease. Biomed Pharmacother. 2020;124:109930. doi: 10.1016/j.biopha.2020.109930 |
| [50] |
Li Y., Jiang H.T., Han L.B., et al. MiR-195 regulates CD40 to maintain Th17/Treg balance in rats with non-alcoholic fatty liver disease // Biomed Pharmacother. 2020. Vol. 124. P. 109930. doi: 10.1016/j.biopha.2020.109930 |
| [51] |
Mehana NA, Ghaiad HR, Hassan M, et al. LncRNA MEG3 regulates the interplay between Th17 and Treg cells in Behçet’s disease and systemic lupus erythematosus. Life Sci. 2022;309:120965. doi: 10.1016/j.lfs.2022.120965 |
| [52] |
Mehana N.A., Ghaiad H.R., Hassan M., et al. LncRNA MEG3 regulates the interplay between Th17 and Treg cells in Behçet’s disease and systemic lupus erythematosus // Life Sci. 2022. Vol. 309. P. 120965. doi: 10.1016/j.lfs.2022.120965 |
| [53] |
Liu XL, Pan Q, Cao HX, et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/Forkhead Box transcription factor O1 signaling in nonalcoholic fatty liver disease. Hepatology. 2020;72(2):454–469. doi: 10.1002/hep.31050 |
| [54] |
Liu X.L., Pan Q., Cao H.X., et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/Forkhead Box transcription factor O1 signaling in nonalcoholic fatty liver disease // Hepatology. 2020. Vol. 72, N 2. P. 454–469. doi: 10.1002/hep.31050 |
| [55] |
Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15(6):349–364. doi: 10.1038/s41575-018-0009-6 |
| [56] |
Schuster S., Cabrera D., Arrese M., Feldstein A.E. Triggering and resolution of inflammation in NASH // Nat Rev Gastroenterol Hepatol. 2018. Vol. 15, N 6. P. 349–364. doi: 10.1038/s41575-018-0009-6 |
| [57] |
Yu MC, Chen CH, Liang X, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology. 2004;40(6):1312–1321. doi: 10.1002/hep.20488 |
| [58] |
Yu M.C., Chen C.H., Liang X., et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice // Hepatology. 2004. Vol. 40, N 6. P. 1312–1321. doi: 10.1002/hep.20488 |
| [59] |
Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–456. doi: 10.1146/annurev-pathol-011110-130246 |
| [60] |
Hernandez-Gea V., Friedman S.L. Pathogenesis of liver fibrosis // Annu Rev Pathol. 2011. Vol. 6. P. 425–456. doi: 10.1146/annurev-pathol-011110-130246 |
| [61] |
Xu L, Xu C, Yu C, et al. Association between serum growth hormone levels and nonalcoholic fatty liver disease: a cross-sectional study. PLoS One. 2012;7(8):e44136. doi: 10.1371/journal.pone.0044136 |
| [62] |
Xu L., Xu C., Yu C., et al. Association between serum growth hormone levels and nonalcoholic fatty liver disease: a cross-sectional study // PLoS One. 2012. Vol. 7, N 8. P. e44136. doi: 10.1371/journal.pone.0044136 |
| [63] |
Zhao L, Qiu DK, Ma X. Th17 cells: the emerging reciprocal partner of regulatory T cells in the liver. J Dig Dis. 2010;11(3):126–133. doi: 10.1111/j.1751-2980.2010.00428.x |
| [64] |
Zhao L., Qiu D.K., Ma X. Th17 cells: the emerging reciprocal partner of regulatory T cells in the liver // J Dig Dis. 2010. Vol. 11, N 3. P. 126–133. doi: 10.1111/j.1751-2980.2010.00428.x |
| [65] |
Ma X, Hua J, Mohamood AR, et al. A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury. Hepatology. 2007;46(5):1519–1529. doi: 10.1002/hep.21823 |
| [66] |
Ma X., Hua J., Mohamood A.R., et al. A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury // Hepatology. 2007. Vol. 46, N 5. P. 1519–1529. doi: 10.1002/hep.21823 |
| [67] |
Tang Y, Bian Z, Zhao L, et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol. 2011;166(2):281–290. doi: 10.1111/j.1365-2249.2011.04471.x |
| [68] |
Tang Y., Bian Z., Zhao L., et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease // Clin Exp Immunol. 2011. Vol. 166, N 2. P. 281–290. doi: 10.1111/j.1365-2249.2011.04471.x |
| [69] |
Vonghia L, Ruyssers N, Schrijvers D, et al. CD4+RORγt++ and Tregs in a mouse model of diet-induced nonalcoholic steatohepatitis. Mediators Inflamm. 2015;2015:239623. doi: 10.1155/2015/239623 |
| [70] |
Vonghia L., Ruyssers N., Schrijvers D., et al. CD4+RORγt++ and tregs in a mouse model of diet-induced nonalcoholic steatohepatitis // Mediators Inflamm. 2015. Vol. 2015. P. 239623. doi: 10.1155/2015/239623 |
| [71] |
Rau M, Schilling A-K, Meertens J, et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/Resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol. 2016;196(1):97–105. doi: 10.4049/jimmunol.1501175 |
| [72] |
Rau M., Schilling A.-K., Meertens J., et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver // J Immunol. 2016. Vol. 196, N 1. P. 97–105. doi: 10.4049/jimmunol.1501175 |
| [73] |
Zhou Y, Zhang H, Yao Y, et al. CD4+ T cell activation and inflammation in NASH-related fibrosis. Front Immunol. 2022;13:967410. doi: 10.3389/fimmu.2022.967410 |
| [74] |
Zhou Y., Zhang H., Yao Y., et al. CD4+ T cell activation and inflammation in NASH-related fibrosis // Front. Immunol. 2022. Vol. 13. P. 967410. doi: 10.3389/fimmu.2022.967410 |
| [75] |
Seike T, Mizukoshi E, Yamada K, et al. Fatty acid-driven modifications in T-cell profiles in non-alcoholic fatty liver disease patients. J Gastroenterol. 2020;55(7):701–711. doi: 10.1007/s00535-020-01679-7 |
| [76] |
Seike T., Mizukoshi E., Yamada K., et al. Fatty acid-driven modifications in T-cell profiles in non-alcoholic fatty liver disease patients // J Gastroenterol. 2020. Vol. 55, N 7. P. 701–711. doi: 10.1007/s00535-020-01679-7 |
| [77] |
Wang X, Li W, Fu J, et al. Correlation between T-Lymphocyte subsets, regulatory T Cells, and hepatic fibrosis in patients with nonalcoholic fatty liver. Evid Based Complement Alternat Med. 2022;2022:6250751. doi: 10.1155/2022/6250751 |
| [78] |
Wang X., Li W., Fu J., et al. Correlation between T-Lymphocyte subsets, regulatory T Cells, and hepatic fibrosis in patients with nonalcoholic fatty liver // Evid Based Complement Alternat Med. 2022. Vol. 2022, P. 6250751. doi: 10.1155/2022/6250751 |
| [79] |
Karimi E, Azari H, Tahmasebi A, et al. LncRNA-miRNA network analysis across the Th17 cell line reveals biomarker potency of lncRNA NEAT1 and KCNQ1OT1 in multiple sclerosis. J Cell Mol Med. 2022;26(8):2351–2362. doi: 10.1111/jcmm.17256 |
| [80] |
Karimi E., Azari H., Tahmasebi A., et al. LncRNA-miRNA network analysis across the Th17 cell line reveals biomarker potency of lncRNA NEAT1 and KCNQ1OT1 in multiple sclerosis // J Cell Mol Med. 2022. Vol. 26, N 8. P. 2351–2362. doi: 10.1111/jcmm.17256 |
| [81] |
Wu M, Sun J, Wang L, et al. The lncRNA HOTAIR via miR-17-5p is involved in arsenite-induced hepatic fibrosis through regulation of Th17 cell differentiation. J Hazard Mater. 2023;443(Pt B):130276. doi: 10.1016/j.jhazmat.2022.130276 |
| [82] |
Wu M., Sun J., Wang L., et al. The lncRNA HOTAIR via miR-17-5p is involved in arsenite-induced hepatic fibrosis through regulation of Th17 cell differentiation // J Hazard Mater. 2023. Vol. 443(Pt B). P. 130276. doi: 10.1016/j.jhazmat.2022.130276 |
| [83] |
Lu LF, Thai TH, Calado DP, et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T Cells by targeting SOCS1 protein. Immunity. 2009;30(1):80–91. doi: 10.1016/j.immuni.2008.11.010 |
| [84] |
Lu L.F., Thai T.H., Calado D.P., et al. Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein // Immunity. 2009. Vol. 30, N 1. P. 80–91. doi: 10.1016/j.immuni.2008.11.010 |
| [85] |
Dong J, Warner LM, Lin LL, et al. miR-155 promotes T reg cell development by safeguarding medullary thymic epithelial cell maturation. J Exp Med. 2021;218(2):e20192423. doi: 10.1084/jem.20192423 |
| [86] |
Dong J., Warner L.M., Lin L.L., et al. miR-155 promotes T reg cell development by safeguarding medullary thymic epithelial cell maturation // J Exp Med. 2021. Vol. 218, N 2. P. e20192423. doi: 10.1084/jem.20192423 |
| [87] |
Hu J, Huang S, Liu X, et al. miR-155: an important role in inflammation response. J Immunol Res. 2022;2022:7437281. doi: 10.1155/2022/7437281 |
| [88] |
Hu J., Huang S., Liu X., et al. MiR-155: an important role in inflammation response // J Immunol Res. 2022. Vol. 2022. P. 7437281. doi: 10.1155/2022/7437281 |
| [89] |
Kim HJ, Park SO, Byeon HW, et al. T cell-intrinsic miR-155 is required for Th2 and Th17-biased responses in acute and chronic airway inflammation by targeting several different transcription factors. Immunology. 2022;166(3):357–379. doi: 10.1111/imm.13477 |
| [90] |
Kim H.J., Park S.O., Byeon H.W., et al. T cell-intrinsic miR-155 is required for Th2 and Th17-biased responses in acute and chronic airway inflammation by targeting several different transcription factors // Immunology. 2022. Vol. 166, N 3. P. 357–379. doi: 10.1111/imm.13477 |
| [91] |
O’Connell RM, Kahn D, Gibson WSJ, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity. 2010;33(4):607–619. doi: 10.1016/j.immuni.2010.09.009 |
| [92] |
O’Connell R.M., Kahn D., Gibson W.S., et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development // Immunity. 2010. Vol. 33, N 4. P. 607–619. doi: 10.1016/j.immuni.2010.09.009 |
| [93] |
Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(5824):608–611. doi: 10.1126/science.1139253 |
| [94] |
Rodriguez A., Vigorito E., Clare S., et al. Requirement of bic/microRNA-155 for Normal Immune Function // Science. 2007. Vol. 316, N 5824. P. 608–611. doi: 10.1126/science.1139253 |
| [95] |
Luedde T, Schwabe RF. NF-kappaB in the liver — linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8(2):108–118. doi: 10.1038/nrgastro.2010.213 |
| [96] |
Luedde T., Schwabe R.F. NF-kappaB in the liver — linking injury, fibrosis and hepatocellular carcinoma // Nat Rev Gastroenterol Hepatol. 2011. Vol. 8, N 2. P. 108–118. doi: 10.1038/nrgastro.2010.213 |
| [97] |
Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol. 2003;3(1):51–62. doi: 10.1038/nri981 |
| [98] |
Crispe I.N. Hepatic T cells and liver tolerance // Nat Rev Immunol. 2003. Vol. 3, N 1. P. 51–62. doi: 10.1038/nri981 |
| [99] |
Herkel J, Schuchmann M, Tiegs G, Lohse AW. Immune-mediated liver injury. J Hepatol. 2005;42(6):920–923. doi: 10.1016/j.jhep.2005.02.009 |
| [100] |
Herkel J., Schuchmann M., Tiegs G., Lohse A.W. Immune-mediated liver injury // J Hepatol. 2005. Vol. 42, N 6. P. 920–923. doi: 10.1016/j.jhep.2005.02.009 |
| [101] |
Tyshchuk EV, Mikhailova VA, Selkov SA, Sokolov DI. Natural killer cells: origin, phenotype, function. Medical Immunology (Russia). 2021;23(6):1207–1228. EDN: QILUOK doi: 10.15789/1563-0625-NKC-2330 |
| [102] |
Тыщук Е.В., Михайлова В.А., Сельков С.А., Соколов Д.И. Естественные киллеры: происхождение, фенотип, функции // Медицинская иммунология. 2021. Т. 23, № 6. С. 1207–1228. EDN: QILUOK doi: 10.15789/1563-0625-NKC-2330 |
| [103] |
Rhost S, Sedimbi S, Kadri N, Cardell SL. Immunomodulatory type II natural killer T lymphocytes in health and disease. Scand J Immunol. 2012;76(3):246–255. doi: 10.1111/j.1365-3083.2012.02750.x |
| [104] |
Rhost S., Sedimbi S., Kadri N., Cardell S.L. Immunomodulatory type II natural killer T lymphocytes in health and disease // Scand J Immunol. 2012. Vol. 76, N 3. P. 246–255. doi: 10.1111/j.1365-3083.2012.02750.x |
| [105] |
Taniguchi M, Seino K, Nakayama T. The NKT cell system: bridging innate and acquired immunity. Nat Immunol. 2003;4(12):1164–1165. doi: 10.1038/ni1203-1164 |
| [106] |
Taniguchi M., Seino K., Nakayama T. The NKT cell system: bridging innate and acquired immunity // Nat Immunol. 2003. Vol. 4, N 12. P. 1164–1165. doi: 10.1038/ni1203-1164 |
| [107] |
Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25:297–336. doi: 10.1146/annurev.immunol.25.022106.141711 |
| [108] |
Bendelac A., Savage P.B., Teyton L. The biology of NKT cells // Annu Rev Immunol. 2007. Vol. 25. P. 297–336. doi: 10.1146/annurev.immunol.25.022106.141711 |
| [109] |
Exley M, Garcia J, Balk SP, Porcelli S. Requirements for CD1d recognition by human invariant V alpha 24+ CD4-CD8- T cells. J Exp Med. 1997;186(1):109–120. doi: 10.1084/jem.186.1.109 |
| [110] |
Exley M., Garcia J., Balk S.P., Porcelli S. Requirements for CD1d recognition by human invariant V alpha 24+ CD4-CD8- T cells // J Exp Med. 1997. Vol. 186, N 1. P. 109–120. doi: 10.1084/jem.186.1.109 |
| [111] |
Arrenberg P, Halder R, Kumar V. Cross-regulation between distinct natural killer T cell subsets influences immune response to self and foreign antigens. J Cell Physiol. 2009;218(2):246–250. doi: 10.1002/jcp.21597 |
| [112] |
Arrenberg P., Halder R., Kumar V. Cross-regulation between distinct natural killer T cell subsets influences immune response to self and foreign antigens // J Cell Physiol. 2009. Vol. 218, N 2. P. 246–250. doi: 10.1002/jcp.21597 |
| [113] |
Kumar V, Delovitch TL. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology. 2014;142(3):321–336. doi: 10.1111/imm.12247 |
| [114] |
Kumar V., Delovitch T.L. Different subsets of natural killer T cells may vary in their roles in health and disease // Immunology. 2014. Vol. 142, N 3. P. 321–336. doi: 10.1111/imm.12247 |
| [115] |
Maricic I, Marrero I, Eguchi A, et al. Differential activation of hepatic invariant nkt cell subsets plays a key role in progression of nonalcoholic steatohepatitis. J Immunol. 2018;201(10):3017–3035. doi: 10.4049/jimmunol.1800614 |
| [116] |
Maricic I., Marrero I., Eguchi A., et al. Differential activation of hepatic invariant NKT cell subsets plays a key role in progression of nonalcoholic steatohepatitis // J Immunol. 2018. Vol. 201, N 10. P. 3017–3035. doi: 10.4049/jimmunol.1800614 |
| [117] |
Girardi E, Maricic I, Wang J, et al. Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat Immunol. 2012;13(9):851–856. doi: 10.1038/ni.2371 |
| [118] |
Girardi E., Maricic I., Wang J., et al. Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens // Nat Immunol. 2012. Vol. 13, N 9. P. 851–856. doi: 10.1038/ni.2371 |
| [119] |
Arrenberg P, Halder R, Dai Y, et al. Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc Natl Acad Sci U S A. 2010;107(24):10984–10989. doi: 10.1073/pnas.1000576107 |
| [120] |
Arrenberg P., Halder R., Dai Y., et al. Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid // Proc Natl Acad Sci U S A. 2010. Vol. 107, N 24. P. 10984–10989. doi: 10.1073/pnas.1000576107 |
| [121] |
Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141(5):1572–1585. doi: 10.1053/j.gastro.2011.09.002 |
| [122] |
Gao B., Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets // Gastroenterology. 2011. Vol. 141, N 5. P. 1572–1585. doi: 10.1053/j.gastro.2011.09.002 |
| [123] |
Matsuda JL, Naidenko OV, Gapin L, et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med. 2000;192(5):741–754. doi: 10.1084/jem.192.5.741 |
| [124] |
Matsuda J.L., Naidenko O.V., Gapin L., et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers // J Exp Med. 2000. Vol. 192, N 5. P. 741–754. doi: 10.1084/jem.192.5.741 |
| [125] |
Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol. 1997;15:535–562. doi: 10.1146/annurev.immunol.15.1.535 |
| [126] |
Bendelac A., Rivera M.N., Park S.H., Roark J.H. Mouse CD1-specific NK1 T cells: development, specificity, and function // Annu Rev Immunol. 1997. Vol. 15. P. 535–562. doi: 10.1146/annurev.immunol.15.1.535 |
| [127] |
Jahng A, Maricic I, Aguilera C, et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med. 2004;199(7):947–957. doi: 10.1084/jem.20031389 |
| [128] |
Jahng A., Maricic I., Aguilera C., et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide // J Exp Med. 2004. Vol. 199, N 7. P. 947–957. doi: 10.1084/jem.20031389 |
| [129] |
Gu X, Chu Q, Ma, et al. New insights into iNKT cells and their roles in liver diseases. Front Immunol. 2022;13:1035950. doi: 10.3389/fimmu.2022.1035950 |
| [130] |
Gu X., Chu Q., Ma, et al. New insights into iNKT cells and their roles in liver diseases // Front Immunol. 2022. Vol. 13. P. 1035950. doi: 10.3389/fimmu.2022.1035950 |
| [131] |
Tang T, Sui Y, Lian, et al. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death. PLoS One. 2013;8(12):e81949. doi: 10.1371/journal.pone.0081949 |
| [132] |
Tang T., Sui Y., Lian, et al. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death // PLoS One. 2013. Vol. 8, N 12. P. e81949. doi: 10.1371/journal.pone.0081949 |
| [133] |
Hou X, Hao X, Zheng M, et al. CD205- TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells. Cell Mol Immunol. 2017;14(8):675–684. doi: 10.1038/cmi.2015.111 |
| [134] |
Hou X., Hao X., Zheng M., et al. CD205- TLR9-IL-12 axis contributes to CpG-induced oversensitive liver injury in HBsAg transgenic mice by promoting the interaction of NKT cells with Kupffer cells // Cell Mol Immunol. 2017. Vol. 14, N 8. P. 675–684. doi: 10.1038/cmi.2015.111 |
| [135] |
Cui K, Yan G, Xu C, et al. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin- 1β in mice. J Hepatol. 2015;62(6):1311–1318. doi: 10.1016/j.jhep.2014.12.027 |
| [136] |
Cui K., Yan G., Xu C., et al. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin- 1β in mice // J Hepatol. 2015. Vol. 62, N 6. P. 1311–1318. doi: 10.1016/j.jhep.2014.12.027 |
| [137] |
Liew PX, Lee WY, Kubes P. iNKT cells orchestrate a switch from inflammation to resolution of sterile liver injury. Immunity. 2017;47(4):752–765.e5. doi: 10.1016/j.immuni.2017.09.016 |
| [138] |
Liew P.X., Lee W.Y., Kubes P. iNKT cells orchestrate a switch from inflammation to resolution of sterile liver injury // Immunity. 2017. Vol. 47, N 4. P. 752–765. doi: 10.1016/j.immuni.2017.09.016 |
| [139] |
Wang H, Li L, Li Y, et al. Intravital imaging of interactions between iNKT and Kupffer cells to clear free lipids during steatohepatitis. Theranostics. 2021;11(5):2149–2169. doi: 10.7150/thno.51369 |
| [140] |
Wang H., Li L., Li Y., et al. Intravital imaging of interactions between iNKT and Kupffer cells to clear free lipids during steatohepatitis // Theranostics. 2021. Vol. 11, N 5. P. 2149–2169. doi: 10.7150/thno.51369 |
| [141] |
Han M, Geng J, Zhang S, et al. Invariant natural killer T cells drive hepatic homeostasis in nonalcoholic fatty liver disease via sustained IL-10 expression in CD170+ Kupffer cells. Eur J Immunol. 2023;53(11):e2350474. doi: 10.1002/eji.202350474 |
| [142] |
Han M., Geng J., Zhang S., et al. Invariant natural killer T cells drive hepatic homeostasis in nonalcoholic fatty liver disease via sustained IL-10 expression in CD170+ Kupffer cells // Eur J Immunol. 2023. Vol. 53, N 11. P. e2350474. doi: 10.1002/eji.202350474 |
| [143] |
Arrenberg P, Maricic I, Kumar V. Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology. 2011;140(2):646–655. doi: 10.1053/j.gastro.2010.10.003 |
| [144] |
Arrenberg P., Maricic I., Kumar V. Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice // Gastroenterology. 2011. Vol. 140, N 2. P. 646–655. doi: 10.1053/j.gastro.2010.10.003 |
| [145] |
Halder RC, Aguilera C, Maricic I, Kumar V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J Clin Invest. 2007;117(8):2302–2312. doi: 10.1172/JCI31602 |
| [146] |
Halder R.C., Aguilera C., Maricic I., Kumar V. Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease // J Clin Invest. 2007. Vol. 117, N 8. P. 2302–2312. doi: 10.1172/JCI31602 |
| [147] |
Maricic I, Sheng H, Marrero I, et al. Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology. 2015;61(4):1357–1369. doi: 10.1002/hep.27632 |
| [148] |
Maricic I., Sheng H., Marrero I., et al. Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice // Hepatology. 2015. V. 61, N 4. P. 1357–1369. doi: 10.1002/hep.27632 |
| [149] |
Mathews S, Feng D, Maricic I, et al. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration. Cell Mol Immunol. 2016;13(2):206–216. doi: 10.1038/cmi.2015.06 |
| [150] |
Mathews S., Feng D., Maricic I., et al. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration // Cell Mol Immunol. 2016. Vol. 13, N 2. P. 206–216. doi: 10.1038/cmi.2015.06 |
| [151] |
Guebre-Xabier M, Yang S, Lin HZ, et al. Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage. Hepatology. 2000;31(3):633–640. doi: 10.1002/hep.510310313 |
| [152] |
Guebre-Xabier M., Yang S., Lin H.Z., et al. Altered hepatic lymphocyte subpopulations in obesity-related murine fatty livers: potential mechanism for sensitization to liver damage // Hepatology. 2000. Vol. 31, N 3. P. 633–640. doi: 10.1002/hep.510310313 |
| [153] |
Ma X, Hua J, Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol. 2008;49(5):821–830. doi: 10.1016/j.jhep.2008.05.025 |
| [154] |
Ma X., Hua J., Li Z. Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells // J Hepatol. 2008. Vol. 49, N 5. P. 821–830. doi: 10.1016/j.jhep.2008.05.025 |
| [155] |
Satoh M, Andoh Y, Clingan CS, et al. Type II NKT cells stimulate diet-induced obesity by mediating adipose tissue infammation, steatohepatitis and insulin resistance. PLoS One. 2012;7(2):e30568. doi: 10.1371/journal.pone.0030568 |
| [156] |
Satoh M., Andoh Y., Clingan C.S., et al. Type II NKT cells stimulate diet-induced obesity by mediating adipose tissue infammation, steatohepatitis and insulin resistance // PLoS One. 2012. Vol. 7, N 2. P. e30568. doi: 10.1371/journal.pone.0030568 |
| [157] |
Sutti S, Jindal A, Locatelli I, et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic infammation in NASH. Hepatology. 2014;59(3):886–897. doi: 10.1002/hep.26749 |
| [158] |
Sutti S., Jindal A., Locatelli I., et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic infammation in NASH // Hepatology. 2014. Vol. 59, N 3. P. 886–897. doi: 10.1002/hep.26749 |
| [159] |
Wolf MJ, Adili A, Piotrowitz K, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonal coholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell. 2014;26(4):549–564. doi: 10.1016/j.ccell.2014.09.003 |
| [160] |
Wolf M.J., Adili A., Piotrowitz K., et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes // Cancer Cell. 2014. Vol. 26, N 4. P. 549–564. doi: 10.1016/j.ccell.2014.09.003 |
| [161] |
Syn WK, Agboola KM, Swiderska M, et al. NKT-associated hedgehog and osteopontin drive fbrogenesis in nonalcoholic fatty liver disease. Gut. 2012;61(9):1323–1329. doi: 10.1136/gutjnl-2011-301857 |
| [162] |
Syn W.K., Agboola K.M., Swiderska M., et al. NKT-associated hedgehog and osteopontin drive fbrogenesis in nonalcoholic fatty liver disease // Gut. 2012. Vol. 61, N 9. P. 1323–1329. doi: 10.1136/gutjnl-2011-301857 |
| [163] |
Syn WK, Oo YH, Pereira TA, et al. Accumula tion of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology. 2010;51(6):1998–2007. doi: 10.1002/hep.23599 |
| [164] |
Syn W.K., Oo Y.H., Pereira T.A., et al. Accumula tion of natural killer T cells in progressive nonalcoholic fatty liver disease // Hepatology. 2010. Vol. 51, N 6. P. 1998–2007. doi: 10.1002/hep.23599 |
| [165] |
Li Z, Lin H, Yang S, Diehl AM. Murine leptin deficiency alters kupffer cell production of cytokines that regulate the innate immune system. Gastroenterology. 2002;123(4):1304–1310. doi: 10.1053/gast.2002.35997 |
| [166] |
Li Z., Lin H., Yang S., Diehl A.M. Murine leptin deficiency alters kupffer cell production of cytokines that regulate the innate immune system // Gastroenterology. 2002. Vol. 123, N 4. P. 1304–1310. doi: 10.1053/gast.2002.35997 |
| [167] |
Elinav E, Pappo O, Sklair-Levy M, et al. Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping. J Pathol. 2006;209(1):121–128. doi: 10.1002/path.1950 |
| [168] |
Elinav E., Pappo O., Sklair-Levy M., et al. Adoptive transfer of regulatory NKT lymphocytes ameliorates non-alcoholic steatohepatitis and glucose intolerance in ob/ob mice and is associated with intrahepatic CD8 trapping // J Pathol. Vol. 209, N 1. P. 121–128. doi: 10.1002/path.1950 |
| [169] |
Kremer M, Thomas E, Milton RJ, et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology. 2010;51(1):130–141. doi: 10.1002/hep.23292 |
| [170] |
Kremer M., Thomas E., Milton R.J., et al. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis // Hepatology. 2010. Vol. 51, N 1. P. 130–141. doi: 10.1002/hep.23292 |
| [171] |
Li Z, Soloski MJ, Diehl AM. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology. 2005;42(4):880–885. doi: 10.1002/hep.20826 |
| [172] |
Li Z., Soloski M.J., Diehl A.M. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease // Hepatology. 2005. Vol. 42, N 4. P. 880–885. doi: 10.1002/hep.20826 |
| [173] |
Syn WK, Choi SS, Liaskou E, et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis. Hepatology. 2011;53(1):106–115. doi: 10.1002/hep.23998 |
| [174] |
Syn W.K., Choi S.S., Liaskou E., et al. Osteopontin is induced by hedgehog pathway activation and promotes fibrosis progression in nonalcoholic steatohepatitis // Hepatology. 2011. Vol. 53, N 1. P. 106–115. doi: 10.1002/hep.23998 |
| [175] |
Tajiri K, Shimizu Y, Tsuneyama K, Sugiyama T. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 2009;21(6):673–680. doi: 10.1097/MEG.0b013e32831bc3d6 |
| [176] |
Tajiri K., Shimizu Y., Tsuneyama K., Sugiyama T. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease // Eur J Gastroenterol Hepatol. 2009. V. 21, N 6. P. 673–680. doi: 10.1097/MEG.0b013e32831bc3d6 |
| [177] |
Miyagi T, Takehara T, Uemura A, et al. Absence of invariant natural killer T cells deteriorates liver infammation and fbrosis in mice fed high-fat diet. J Gastroenterol. 2010;45(12):1247–1254. doi: 10.1007/s00535-010-0272-y |
| [178] |
Miyagi T., Takehara T., Uemura A., et al. Absence of invariant natural killer T cells deteriorates liver infammation and fbrosis in mice fed high-fat diet // J Gastroenterol. 2010. Vol. 45, N 12. P. 1247–1254. doi: 10.1007/s00535-010-0272-y |
| [179] |
Zheng S, Yang W, Yao D, et al. A comparative study on roles of natural killer T cells in two diet-induced non-alcoholic steatohepatitis-related fibrosis in mice. Ann Med. 2022;54(1):2233–2245. doi: 10.1080/07853890.2022.2108894 |
| [180] |
Zheng S., Yang W., Yao D., et al. A comparative study on roles of natural killer T cells in two diet-induced non-alcoholic steatohepatitis-related fibrosis in mice // Ann Med. 2022. Vol. 54, N 1. P. 2233–2245. doi: 10.1080/07853890.2022.2108894 |
| [181] |
Cuño-Gómiz C, de Gregorio E, Tutusaus A, et al. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice. Biol Sex Differ. 2023;14(1):85. doi: 10.1186/s13293-023-00569-w |
| [182] |
Cuño-Gómiz C., de Gregorio E., Tutusaus A., et al. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice // Biol Sex Differ. 2023. Vol. 14, N 1. P. 85. doi: 10.1186/s13293-023-00569-w |
| [183] |
Diedrich T, Kummer S, Galante A, et al. Characterization of the immune cell landscape of patients with NAFLD. PLoS One. 2020;15(3):e0230307. doi: 10.1371/journal.pone.0230307 |
| [184] |
Diedrich T., Kummer S., Galante A., et al. Characterization of the immune cell landscape of patients with NAFLD // PLoS One. 2020. P. 15, N 3. P. e0230307. doi: 10.1371/journal.pone.0230307 |
| [185] |
Adler M, Taylor S, Okebugwu K, et al. Intrahepatic natural killer T cell populations are increased in human hepatic steatosis. World J Gastroenterol. 2011;17(13):1725–1731. doi: 10.3748/wjg.v17.i13.1725 |
| [186] |
Adler M., Taylor S., Okebugwu K., et al. Intrahepatic natural killer T cell populations are increased in human hepatic steatosis // World J Gastroenterol. 2011. Vol. 17, N 13. P. 1725–1731. doi: 10.3748/wjg.v17.i13.1725 |
| [187] |
Caballano-Infantes E, García-García A, Lopez-Gomez C, et al. Differential iNKT and T cells activation in non-alcoholic fatty liver disease and drug-induced liver injury. Biomedicines. 2022;10(1):55. doi: 10.3390/biomedicines10010055 |
| [188] |
Caballano-Infantes E., García-García A., Lopez-Gomez C., et al. Differential iNKT and T cells activation in non-alcoholic fatty liver disease and drug-induced liver injury // Biomedicines. 2021. Vol. 10, N 1. P. 55. doi: 10.3390/biomedicines10010055 |
| [189] |
Stepanova OI, Bazhenov DO, Khokhlova EV, et al. The role of subpopulations of cd8+ t lymphocytes in the development of pregnancy. Medical Immunology (Russia). 2018;20(5):621–638. EDN: YLTKRF doi: 10.15789/1563-0625-2018-5-621-638 |
| [190] |
Степанова О.И., Баженов Д.О., Хохлова Е.В., и др. Молекулярно-генетические механизмы регуляции ангиогенеза // Медицинская иммунология. 2018. Т. 20, № 5. С. 621–638. EDN: YLTKRF doi: 10.15789/1563-0625-2018-5-621-638 |
| [191] |
Ghazarian M, Revelo XS, Nøhr MK, et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome. Sci Immunol. 2017;2(10):eaai7616. doi: 10.1126/sciimmunol.aai7616 |
| [192] |
Ghazarian M., Revelo X.S., Nøhr M.K., et al. Type I interferon responses drive intrahepatic T cells to promote metabolic syndrome // Sci Immunol. 2017. Vol. 2, N 10. P. eaai7616. doi: 10.1126/sciimmunol.aai7616 |
| [193] |
Haas JT, Vanghia L, Mogilenko DA, et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nat Metab. 2019;1(6):604–614. Corrected and republished from: Nat Metab. 2019;1(7):744. doi: 10.1038/s42255-019-0076-1 |
| [194] |
Haas J.T., Vanghia L., Mogilenko D.A., et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution // Nat Metab. 2019. Vol. 1, N 6. P. 604–614. Corrected and republished from: Nat Metab. 2019. Vol. 1, N 7. P. 744. doi: 10.1038/s42255-019-0076-1 |
| [195] |
Breuer DA, Pacheco MC, Washington MK, et al. CD8+ T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol. 2020;318(2):G211–G224. doi: 10.1152/ajpgi.00040.2019 |
| [196] |
Breuer D.A., Pacheco M.C., Washington M.K., et al. CD8+ T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease // Am J Physiol Gastrointest Liver Physiol. 2020. Vol. 318, N 2. P. G211–G224. doi: 10.1152/ajpgi.00040.2019 |
| [197] |
Hammerich L, Tacke F. Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol. 2023;20(10):633–646. doi: 10.1038/s41575-023-00807-x |
| [198] |
Hammerich L., Tacke F. Hepatic inflammatory responses in liver fibrosis // Nat Rev Gastroenterol Hepatol. 2023. Vol. 20, N 10. P. 633–646. doi: 10.1038/s41575-023-00807-x |
| [199] |
Koda Y, Teratani T, Chu PS, et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat Commun. 2021;12(1):4474. doi: 10.1038/s41467-021-24734-0 |
| [200] |
Koda Y., Teratani T., Chu P.S., et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells // Nat Commun. 2021. Vol. 12, N 1. P. 4474. doi: 10.1038/s41467-021-24734-0 |
| [201] |
Zhang Q, Wang J, Huang F, et al. Leptin induces NAFLD progression through infiltrated CD8+ T lymphocytes mediating pyroptotic-like cell death of hepatocytes and macrophages. Dig Liver Dis. 2021;53(5):598–605. doi: 10.1016/j.dld.2020.10.025 |
| [202] |
Zhang Q., Wang J., Huang F., et al. Leptin induces NAFLD progression through infiltrated CD8+ T lymphocytes mediating pyroptotic-like cell death of hepatocytes and macrophages // Dig Liver Dis. 2021. Vol. 53, N 5. P. 598–605. doi: 10.1016/j.dld.2020.10.025 |
| [203] |
Sutti S, Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol. 2020;17(2):81–92. doi: 10.1038/s41575-019-0210-2 |
| [204] |
Sutti S., Albano E. Adaptive immunity: an emerging player in the progression of NAFLD // Nat Rev Gastroenterol Hepatol. 2020. Vol. 17, N 2. P. 81–92. doi: 10.1038/s41575-019-0210-2 |
| [205] |
Bhattacharjee J, Kirby M, Softic S, et al. Hepatic natural killer T-cell and CD8+ T-cellsignatures in mice with nonalcoholic steatohepatitis. Hepatol Commun. 2017;1(4):299–310. doi: 10.1002/hep4.1041 |
| [206] |
Bhattacharjee J., Kirby M., Softic S., et al. Hepatic natural killer T-cell and CD8+ T-cellsignatures in mice with nonalcoholic steatohepatitis // Hepatol Commun. 2017. Vol. 1, N 4. P. 299–310. doi: 10.1002/hep4.1041 |
| [207] |
Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res. 2009;48(1):1–26. doi: 10.1016/j.plipres.2008.08.001 |
| [208] |
Musso G., Gambino R., Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD) // Prog Lipid Res. 2009. Vol. 48, N 1. P. 1–26. doi: 10.1016/j.plipres.2008.08.001 |
| [209] |
Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology. 2010;52(2):774–788. doi: 10.1002/hep.23719 |
| [210] |
Neuschwander-Tetri B.A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites // Hepatology. 2010. Vol. 52, N 2. P. 774–788. doi: 10.1002/hep.23719 |
| [211] |
Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66(6):1300–1312. doi: 10.1016/j.jhep.2017.02.026 |
| [212] |
Tacke F. Targeting hepatic macrophages to treat liver diseases // J Hepatol. 2017. Vol. 66, N 6. P. 1300–1312. doi: 10.1016/j.jhep.2017.02.026 |
| [213] |
Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60(5):1090–1096. doi: 10.1016/j.jhep.2013.12.025 |
| [214] |
Tacke F., Zimmermann H.W. Macrophage heterogeneity in liver injury and fibrosis // J Hepatol. 2014. Vol. 60, N 5. P. 1090–1096. doi: 10.1016/j.jhep.2013.12.025 |
| [215] |
Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17(5):306–321. doi: 10.1038/nri.2017.11 |
| [216] |
Krenkel O., Tacke F. Liver macrophages in tissue homeostasis and disease // Nat Rev Immunol. 2017. Vol. 17, N 5. P. 306–321. doi: 10.1038/nri.2017.11 |
| [217] |
Zimmermann HW, Seidler S, Nattermann J, et al. Functional contribution of elevated circulating and hepatic non-classical CD14+CD16+ monocytes to inflammation and human liver fibrosis. PLoS One. 2010;5(6):e11049. doi: 10.1371/journal.pone.0011049 |
| [218] |
Zimmermann H.W., Seidler S., Nattermann J., et al. Functional contribution of elevated circulating and hepatic non-classical CD14+CD16+ monocytes to inflammation and human liver fibrosis // PLoS One. 2010. Vol. 5, N 6. P. e11049. doi: 10.1371/journal.pone.0011049 |
| [219] |
Wang Y, Gao L. Monocyte-derived KCs (MoKCs) contribute to the KC pool in NASH. Cell Mol Immunol. 2021;18(3):518–519. doi: 10.1038/s41423-020-00606-3 |
| [220] |
Wang Y., Gao L. Monocyte-derived KCs (MoKCs) contribute to the KC pool in NASH // Cell Mol Immunol. 2021. Vol. 18, N 3. P. 518–519. doi: 10.1038/s41423-020-00606-3 |
| [221] |
Tran S, Baba I, Poupel L, et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity. 2020;53(3):627–640.e5. doi: 10.1016/j.immuni.2020.06.003 |
| [222] |
Tran S., Baba I., Poupel L., et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis // Immunity. 2020. Vol. 53, N 3. P. 627–640. doi: 10.1016/j.immuni.2020.06.003 |
| [223] |
Leroux A, Ferrere G, Godie V, et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J Hepatol. 2012;57(1):141–149. doi: 10.1016/j.jhep.2012.02.028 |
| [224] |
Leroux A., Ferrere G., Godie V., et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis // J Hepatol. 2012. Vol. 57, N 1. P. 141–149. doi: 10.1016/j.jhep.2012.02.028 |
| [225] |
Vonghia L, Magrone T, Verrijken A, et al. Peripheral and hepatic vein cytokine levels in correlation with non-alcoholic fatty liver disease (NAFLD)-related metabolic, histological, and haemodynamic features. PLoS One. 2015;10(11):e0143380. doi: 10.1371/journal.pone.0143380 |
| [226] |
Vonghia L., Magrone T., Verrijken A., et al. Peripheral and hepatic vein cytokine levels in correlation with non-alcoholic fatty liver disease (NAFLD)-related metabolic, histological, and haemodynamic features // PLoS One. 2015. Vol. 10, N 11. P. e0143380. doi: 10.1371/journal.pone.0143380 |
| [227] |
Garcia-Martinez I, Santoro N, Chen Y, et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest. 2016;126(3):859–864. doi: 10.1172/JCI83885 |
| [228] |
Garcia-Martinez I., Santoro N., Chen Y., et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9 // J Clin Invest. 2016. Vol. 126, N 3. P. 859–864. doi: 10.1172/JCI83885 |
| [229] |
Hirsova P, Ibrahim SH, Krishnan A, et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology. 2016;150(4):956–967. doi: 10.1053/j.gastro.2015.12.037 |
| [230] |
Hirsova P., Ibrahim S.H., Krishnan A., et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes // Gastroenterology. 2016. Vol. 150, N 4. P. 956–967. doi: 10.1053/j.gastro.2015.12.037 |
| [231] |
Chen J, Gu X, Zhou L, et al. Long non-coding RNA-HOTAIR promotes the progression of sepsis by acting as a sponge of miR-211 to induce IL-6R expression. Exp Ther Med. 2019;18(5):3959–3967. doi: 10.3892/etm.2019.8063 |
| [232] |
Chen J., Gu X., Zhou L., et al. Long non-coding RNA-HOTAIR promotes the progression of sepsis by acting as a sponge of miR-211 to induce IL-6R expression // Exp Ther Med. 2019. Vol. 18, N 5. P. 3959–3967. doi: 10.3892/etm.2019.8063 |
| [233] |
Watanabe K, Ohnishi S, Manabe I, et al. KLF6 in nonalcoholic fatty liver disease: role of fibrogenesis and carcinogenesis. Gastroenterology. 2008;135(1):309–312. doi: 10.1053/j.gastro.2008.06.014 |
| [234] |
Watanabe K., Ohnishi S., Manabe I., et al. KLF6 in nonalcoholic fatty liver disease: role of fibrogenesis and carcinogenesis // Gastroenterology. 2008. Vol. 135, N 1. P. 309–312. doi: 10.1053/j.gastro.2008.06.014 |
| [235] |
Tian S, Zhou X, Zhang M, et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res Ther. 2022;13(1):330. doi: 10.1186/s13287-022-03010-y |
| [236] |
Tian S., Zhou X., Zhang M., et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages // Stem Cell Res Ther. 2022. Vol. 13, N 1. P. 330. doi: 10.1186/s13287-022-03010-y |
| [237] |
Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest. 2012;122(8):2884–2897. doi: 10.1172/JCI63455 |
| [238] |
Tsai W.C., Hsu S.D., Hsu C.S., et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis // J Clin Invest. 2012. Vol. 122, N 8. P. 2884–2897. doi: 10.1172/JCI63455 |
| [239] |
Shu B, Zhou YX, Li H, et al. The METTL3/MALAT1/PTBP1/USP8/TAK1 axis promotes pyroptosis and M1 polarization of macrophages and contributes to liver fibrosis. Cell Death Discov. 2021;7(1):368. doi: 10.1038/s41420-021-00756-x |
| [240] |
Shu B., Zhou Y.-X., Li H., et al. The METTL3/MALAT1/PTBP1/USP8/TAK1 axis promotes pyroptosis and M1 polarization of macrophages and contributes to liver fibrosis // Cell Death Discov. 2021. Vol. 7, N 1. P. 368. doi: 10.1038/s41420-021-00756-x |
| [241] |
Ye D, Zhang T, Lou G, Liu Y. Role of miR-223 in the pathophysiology of liver diseases. Exp Mol Med. 2018; 50(9):1–12. doi: 10.1038/s12276-018-0153-7 |
| [242] |
Ye D., Zhang T., Lou G., Liu Y. Role of miR-223 in the pathophysiology of liver diseases // Exp Mol Med. 2018. Vol. 50, N 9. P. 1–12. doi: 10.1038/s12276-018-0153-7 |
| [243] |
Guillot A, Tacke F. The unexpected role of neutrophils for resolving liver inflammation by transmitting microRNA-223 to macrophages. Hepatology. 2020;71(2):749–751. doi: 10.1002/hep.30925 |
| [244] |
Guillot A., Tacke F. The unexpected role of neutrophils for resolving liver inflammation by transmitting microRNA-223 to macrophages // Hepatology. 2020. Vol. 71, N 2. P. 749–751. doi: 10.1002/hep.30925 |
| [245] |
Calvente CJ, Tameda M, Johnson CD, et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J Clin Invest. 2019;129(10):4091–4109. doi: 10.1172/JCI122258 |
| [246] |
Calvente C.J., Tameda M., Johnson C.D., et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223 // J Clin Invest. 2019. Vol. 129, N 10. P. 4091–4109. doi: 10.1172/JCI122258 |
| [247] |
He Y, Hwang S, Cai Y, et al. MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes. Hepatology. 2019;70(4):1150–1167. doi: 10.1002/hep.30645 |
| [248] |
He Y., Hwang S., Cai Y., et al. MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes // Hepatology. 2019. Vol. 70, N 4. P. 1150–1167. doi: 10.1002/hep.30645 |
| [249] |
Aucher A, Rudnicka D, Davis DM. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol. 2013;191(12):6250–6260. doi: 10.4049/jimmunol.1301728 |
| [250] |
Aucher A., Rudnicka D., Davis D.M. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation // J Immunol. 2013. V. 191, N 12. P. 6250–6260. doi: 10.4049/jimmunol.1301728 |
| [251] |
Ismail N, Wang Y, Dakhlallah D, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013; 121(6):984–995. doi: 10.1182/blood-2011-08-374793 |
| [252] |
Ismail N., Wang Y., Dakhlallah D., et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer // Blood. 2013. Vol. 121, N 6. P. 984–995. doi: 10.1182/blood-2011-08-374793 |
| [253] |
Hou X, Yin S, Ren R, et al. Myeloid-cell–specific IL-6 signaling promotes microRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis. Hepatology. 2021;74(1):116–132. doi: 10.1002/hep.31658 |
| [254] |
Hou X., Yin S., Ren R., et al. Myeloid-cell–specific IL-6 signaling promotes microRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis // Hepatology. 2021. Vol. 74, N 1. P. 116–132. doi: 10.1002/hep.31658 |
| [255] |
Wang X, Sommerfeld MR, Jahn-Hofmann K, et al. A therapeutic silencing RNA targeting hepatocyte TAZ prevents and reverses fibrosis in nonalcoholic steatohepatitis in mice. Hepatol Commun. 2019;3(9):1221–1234. Corrected and republished from: Hepatol Commun. 2019;4(1):134. doi: 10.1002/hep4.1405 |
| [256] |
Wang X., Sommerfeld M.R., Jahn-Hofmann K., et al. A therapeutic silencing RNA targeting hepatocyte TAZ prevents and reverses fibrosis in nonalcoholic steatohepatitis in mice // Hepatol Commun. 2019. Vol. 3, N 9. P. 1221–1234. Corrected and republished from: Hepatol Commun. 2019. Vol. 4, N 1. P. 134. doi: 10.1002/hep4.1405 |
| [257] |
Wang X, Zheng Z, Caviglia JM, et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab. 2016;24(6):848–862. doi: 10.1016/j.cmet.2016.09.016 |
| [258] |
Wang X., Zheng Z., Caviglia J.M, et al. Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis // Cell Metab. 2016. Vol. 24, N 6. P. 848–862. doi: 10.1016/j.cmet.2016.09.016 |
| [259] |
Wree A, McGeough MD, Inzaugarat ME, et al. NLRP3 inflammasome driven liver injury and fibrosis: roles of IL-17 and TNF in mice. Hepatology. 2018;67(2):736–749. doi: 10.1002/hep.29523 |
| [260] |
Wree A., McGeough M.D., Inzaugarat M.E., et al. NLRP3 inflammasome driven liver injury and fibrosis: roles of IL-17 and TNF in mice // Hepatology. 2018. Vol. 67, N 2. P. 736–749. doi: 10.1002/hep.29523 |
| [261] |
Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol. 2017;66(5):1037–1046. doi: 10.1016/j.jhep.2017.01.022 |
| [262] |
Mridha A.R., Wree A., Robertson A.A.B., et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice // J Hepatol. 2017. Vol. 66, N 5. P. 1037–1046. doi: 10.1016/j.jhep.2017.01.022 |
| [263] |
Bi J, Liu J, Chen X, et al. MiR-155-5p-SOCS1/JAK1/STAT1 participates in hepatic lymphangiogenesis in liver fibrosis and cirrhosis by regulating M1 macrophage polarization. Hum Exp Toxicol. 2023;42:9603271221141695. doi: 10.1177/09603271221141695 |
| [264] |
Bi J., Liu J., Chen X., et al. MiR-155-5p-SOCS1/JAK1/STAT1 participates in hepatic lymphangiogenesis in liver fibrosis and cirrhosis by regulating M1 macrophage polarization // Hum Exp Toxicol. 2023. Vol. 42. P. 9603271221141695. doi: 10.1177/09603271221141695 |
| [265] |
Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate Immunity and Inflammation in NAFLD/NASH. Dig Dis Sci. 2016;61(5):1294–1303. doi: 10.1007/s10620-016-4049-x |
| [266] |
Arrese M., Cabrera D., Kalergis A.M., Feldstein A.E. Innate Immunity and Inflammation in NAFLD/NASH // Dig Dis Sci. 2016. Vol. 61, N 5. P. 1294–1303. doi: 10.1007/s10620-016-4049-x |
| [267] |
Hwang S, Yun H, Moon S, et al. Role of neutrophils in the pathogenesis of nonalcoholic steatohepatitis. Front Endocrinol (Lausanne). 2021;12:751802. doi: 10.3389/fendo.2021.751802 |
| [268] |
Hwang S., Yun H., Moon S., et al. Role of neutrophils in the pathogenesis of nonalcoholic steatohepatitis // Front Endocrinol (Lausanne). 2021. Vol. 12. P. 751802. doi: 10.3389/fendo.2021.751802 |
| [269] |
Gadd VL, Skoien R, Powell EE, et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology. 2014;59(4):1393–1405. doi: 10.1002/hep.26937 |
| [270] |
Gadd V.L., Skoien R., Powell E.E., et al. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease // Hepatology. 2014. Vol. 59, N 4. P. 1393–1405. doi: 10.1002/hep.26937 |
| [271] |
Lauszus JS, Eriksen PL, Hansen MM, et al. Activation and functional priming of blood neutrophils in non-alcoholic fatty liver disease increases in non-alcoholic steatohepatitis. Clin Exp Gastroenterol. 2021;14:441–449. doi: 10.2147/CEG.S329424 |
| [272] |
Lauszus J.S., Eriksen P.L., Hansen M.M., et al. Activation and functional priming of blood neutrophils in non-alcoholic fatty liver disease increases in non-alcoholic steatohepatitis // Clin Exp Gastroenterol. 2021. Vol. 14, P. 441–449. doi: 10.2147/CEG.S329424 |
| [273] |
Zhou Z, Xu MJ, Cai Y, et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis. Cell Mol Gastroenterol Hepatol. 2018;5(3):399–413. doi: 10.1016/j.jcmgh.2018.01.003 |
| [274] |
Zhou Z., Xu M.-J., Cai Y., et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis // Cell Mol Gastroenterol Hepatol. 2018. Vol. 5, N 3. P. 399–413. doi: 10.1016/j.jcmgh.2018.01.003 |
| [275] |
Alkhouri N, Morris-Stiff G, Campbell C, et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 2012;32(2):297–302. doi: 10.1111/j.1478-3231.2011.02639.x |
| [276] |
Alkhouri N., Morris-Stiff G., Campbell C., et al. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease // Liver Int. 2012. Vol. 32, N 2. P. 297–302. doi: 10.1111/j.1478-3231.2011.02639.x |
Eco-Vector
/
| 〈 |
|
〉 |