Application of hydrogel scaffolds as a cell substrate for cartilage tissue regeneration
Polina A. Golubinskaya , Arina S. Pikina , Eugene S. Ruchko , Tatyana V. Vladimirova , Alexandra N. Bogomazova , Artem V. Eremeev
Genes & Cells ›› 2024, Vol. 19 ›› Issue (1) : 43 -59.
Application of hydrogel scaffolds as a cell substrate for cartilage tissue regeneration
Cell therapy or tissue engineering is currently one of the potentially effective strategies for repairing cartilage defects. Mesenchymal stromal cells and autologous and allogeneic chondrocytes obtained from cartilage biopsies from patients undergoing arthroscopic surgery are the most commonly used cells for tissue engineering. Matrices (scaffolds) often used during cell implantation can facilitate successful cell implantation. These can be static supporting or plastic hydrogel substances obtained by various methods from natural or synthetic materials, allowing cells to be delivered to the site damaged by injection. Significant advantages of biocompatible hydrogels in cartilage injury therapy are determined based on the properties of the natural extracellular matrix and the high plasticity required for adapting to irregular surfaces of the tissue defect and allowing injectable cell delivery. These characteristics make injectable hydrogels a promising tool for cartilage bioengineering.
This study highlights the progress in injectable hydrogels as carriers of different cells in the repair of cartilage tissue defects, as well as the current requirements and unresolved issues related to the use of such therapeutic approaches.
tissue engineering / chondrogenesis / 3D cell structures / scaffolds / hydrogels
| [1] |
Lee JS, Shim DW, Kang KY, et al. Method categorization of stem cell therapy for degenerative osteoarthritis of the knee: a review. Int J Mol Sci. 2021;22(24):13323. doi: 10.3390/ijms222413323 |
| [2] |
Lee J.S., Shim D.W., Kang K.Y., et al. Method categorization of stem cell therapy for degenerative osteoarthritis of the knee: a review // Int J Mol Sci. 2021. Vol. 22, N 24. P. 13323. doi: 10.3390/ijms222413323 |
| [3] |
Moran CJ, Pascual-Garrido C, Chubinskaya S, et al. Restoration of articular cartilage. J Bone Joint Surg Am. 2014;96(4):336–344. doi: 10.2106/JBJS.L.01329 |
| [4] |
Moran C.J., Pascual-Garrido C., Chubinskaya S., et al. Restoration of articular cartilage // J Bone Joint Surg Am. 2014. Vol. 96, N 4. P. 336–344. doi: 10.2106/JBJS.L.01329 |
| [5] |
Minas T. A primer in cartilage repair. J Bone Joint Surg Br. 2012;94(11 Suppl. A):141–146. doi: 10.1302/0301-620X.94B11.30679 |
| [6] |
Minas T. A primer in cartilage repair // J Bone Joint Surg Br. 2012. Vol. 94, N 11 Suppl. A. P. 141–146. doi: 10.1302/0301-620X.94B11.30679 |
| [7] |
Safran MR, Seiber K. The evidence for surgical repair of articular cartilage in the knee. J Am Acad Orthop Surg. 2010;18(5):259–266. doi: 10.5435/00124635-201005000-00002 |
| [8] |
Safran M.R., Seiber K. The evidence for surgical repair of articular cartilage in the knee // J Am Acad Orthop Surg. 2010. Vol. 18, N 5. P. 259–266. doi: 10.5435/00124635-201005000-00002 |
| [9] |
Huang G, Hua S, Yang T, et al. Platelet-rich plasma shows beneficial effects for patients with knee osteoarthritis by suppressing inflammatory factors. Exp Ther Med. 2018;15(3):3096–3102. doi: 10.3892/etm.2018.5794 |
| [10] |
Huang G., Hua S.H.A., Yang T., et al. Platelet-rich plasma shows beneficial effects for patients with knee osteoarthritis by suppressing inflammatory factors // Exp Ther Med. 2018. Vol. 15, N 3. P. 3096–3102. doi: 10.3892/etm.2018.5794 |
| [11] |
Tsikopoulos K, Tsikopoulos I, Simeonidis E, et al. The clinical impact of platelet-rich plasma on tendinopathy compared to placebo or dry needling injections: a meta-analysis. Phys Ther Sport. 2016;17:87–94. doi: 10.1016/j.ptsp.2015.06.003 |
| [12] |
Tsikopoulos K., Tsikopoulos I., Simeonidis E., et al. The clinical impact of platelet-rich plasma on tendinopathy compared to placebo or dry needling injections: a meta-analysis // Phys Ther Sport. 2016. Vol. 17. P. 87–94. doi: 10.1016/j.ptsp.2015.06.003 |
| [13] |
Zhou Z, Zheng J, Meng X, Wang F. Effects of electrical stimulation on articular cartilage regeneration with a focus on piezoelectric biomaterials for articular cartilage tissue repair and engineering. Int J Mol Sci. 2023;24(3):1836. doi: 10.3390/ijms24031836 |
| [14] |
Zhou Z., Zheng J., Meng X., Wang F. Effects of electrical stimulation on articular cartilage regeneration with a focus on piezoelectric biomaterials for articular cartilage tissue repair and engineering // I Int J Mol Sci. 2023. Vol. 24, N 3. P. 1836. doi: 10.3390/ijms24031836 |
| [15] |
Jooybar E, Abdekhodaie MJ, Alvi M, et al. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells. Acta Biomater. 2019;83:233–244. doi: 10.1016/j.actbio.2018.10.031 |
| [16] |
Jooybar E., Abdekhodaie M.J., Alvi M., et al. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells // Acta Biomater. 2019. Vol. 83. P. 233–244. doi: 10.1016/j.actbio.2018.10.031 |
| [17] |
Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–895. doi: 10.1056/NEJM199410063311401 |
| [18] |
Brittberg M., Lindahl A., Nilsson A., et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation // N Engl J Med. 1994. Vol. 331, N 14. P. 889–895. doi: 10.1056/NEJM199410063311401 |
| [19] |
Brittberg M, Peterson L, Sjögren-Jansson E, et al. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am. 2003;85-A Suppl. 3:109–115. doi: 10.2106/00004623-200300003-00017 |
| [20] |
Brittberg M., Peterson L., Sjögren-Jansson E., et al. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments // J Bone Joint Surg Am. 2003. Vol. 85-A, Suppl. 3. P. 109–115. doi: 10.2106/00004623-200300003-00017 |
| [21] |
Gonzalez-Fernandez P, Rodríguez-Nogales C, Jordan O, Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment. Eur J Pharm Biopharm. 2022;172:41–52. doi: 10.1016/j.ejpb.2022.01.003 |
| [22] |
Gonzalez-Fernandez P., Rodriguez-Nogales C., Jordan O., Allémann E. Combination of mesenchymal stem cells and bioactive molecules in hydrogels for osteoarthritis treatment // Eur J Pharm Biopharm. 2022. Vol. 172. P. 41–52. doi: 10.1016/j.ejpb.2022.01.003 |
| [23] |
Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010;38(6):1259–1271. doi: 10.1177/0363546509346395 |
| [24] |
Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure // Am J Sports Med. 2010. Vol. 38, N 6. P. 1259–1271. doi: 10.1177/0363546509346395 |
| [25] |
Mahapatra C, Jin GZ, Kim HW. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regen Med. 2016;13(5):538–546. doi: 10.1007/s13770-016-0059-1 |
| [26] |
Mahapatra C., Jin G.Z., Kim H.W. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance // Tissue Eng Regen Med. 2016. Vol. 13, N 5. P. 538–546. doi: 10.1007/s13770-016-0059-1 |
| [27] |
Gigante A, Bevilacqua C, Ricevuto A, et al. Membrane-seeded autologous chondrocytes: cell viability and characterization at surgery. Knee Surg Sports Traumatol Arthrosc. 2007;15(1):88–92. doi: 10.1007/s00167-006-0115-9 |
| [28] |
Gigante A., Bevilacqua C., Ricevuto A., et al. Membrane-seeded autologous chondrocytes: cell viability and characterization at surgery // Knee Surg Sports Traumatol Arthrosc. 2007. Vol. 15, N 1. P. 88–92. doi: 10.1007/s00167-006-0115-9 |
| [29] |
Russlies M, Behrens P, Wünsch L, et al. A cell-seeded biocomposite for cartilage repair. Ann Anat. 2002;184(4):317–323. doi: 10.1016/S0940-9602(02)80045-0 |
| [30] |
Russlies M., Behrens P., Wünsch L., et al. A cell-seeded biocomposite for cartilage repair // Ann Anat. 2002. Vol. 184, N 4. P. 317–323. doi: 10.1016/S0940-9602(02)80045-0 |
| [31] |
Zheng MH, Willers C, Kirilak L, et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment. Tissue Eng. 2007;13(4):737–746. doi: 10.1089/ten.2006.0246 |
| [32] |
Zheng M.H., Willers C., Kirilak L., et al. Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment // Tissue Eng. 2007. Vol. 13, N 4. P. 737–746. doi: 10.1089/ten.2006.0246 |
| [33] |
Thermann H, Driessen A., Becher C. Autologous chondrocyte transplantation in the treatment of articular cartilage lesions of the talus. Orthopade. 2008;37(3):232–239. (In Germany). doi: 10.1007/s00132-008-1215-7 |
| [34] |
Thermann H., Driessen A., Becher C. Die autologe Knorpelzelltransplantation zur Behandlung von Knorpelläsionen am Talus // Orthopade. 2008. Vol. 37, N 3. P. 232–239. doi: 10.1007/s00132-008-1215-7 |
| [35] |
Riedl M, Vadalà G, Papalia R, Denaro V. Three-dimensional, scaffold-free, autologous chondrocyte transplantation: a systematic review. Orthop J Sports Med. 2020;8(9):2325967120951152. doi: 10.1177/2325967120951152 |
| [36] |
Riedl M., Vadalà G., Papalia R., et al. Three-dimensional, scaffold-free, autologous chondrocyte transplantation: a systematic review // Orthop J Sports Med. 2020. Vol. 8, N 9. P. 2325967120951152. doi: 10.1177/2325967120951152 |
| [37] |
Meyer U, Wiesmann HP, Libera J, et al. Cartilage defect regeneration by ex vivo engineered autologous microtissue — preliminary results. In Vivo. 2012;26(2):251–257. |
| [38] |
Meyer U., Wiesmann H.P., Libera J., Denaro V. Cartilage defect regeneration by ex vivo engineered autologous microtissue — preliminary results // In Vivo. 2012. Vol. 26, N 2. P. 251–257. |
| [39] |
Jiang S, Guo W, Tian G, et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cells Int. 2020;2020:5690252. doi: 10.1155/2020/5690252 |
| [40] |
Jiang S., Guo W., Tian G., et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope // Stem Cells Int. 2020. Vol. 2020. P. 5690252. doi: 10.1155/2020/5690252 |
| [41] |
Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials (Basel). 2010;3(3):1746–1767. doi: 10.3390/ma3031746 |
| [42] |
Tan H., Marra K.G. Injectable, biodegradable hydrogels for tissue engineering applications // Materials (Basel). 2010. Vol. 3, N 3. С. 1746–1767. doi: 10.3390/ma3031746 |
| [43] |
Schulze-Tanzil G. Activation and dedifferentiation of chondrocytes: implications in cartilage injury and repair. Ann Anat. 2009;191(4):325–338. doi: 10.1016/j.aanat.2009.05.003 |
| [44] |
Schulze-Tanzil G. Activation and dedifferentiation of chondrocytes: implications in cartilage injury and repair // Ann Anat. 2009. Vol. 191, N 4. P. 325–338. doi: 10.1016/j.aanat.2009.05.003 |
| [45] |
Barisón M.J., MJ, Nogoceke R, Josino R, et al. Functionalized hydrogels for cartilage repair: the value of secretome-instructive signaling. Int J Mol Sci. 2022;23(11):6010. doi: 10.3390/ijms23116010 |
| [46] |
Barisón M.J., Nogoceke R., Josino R., et al. Functionalized hydrogels for cartilage repair: the value of secretome-instructive signaling // Int J Mol Sci. 2022. Vol. 23, N 11. P. 6010. doi: 10.3390/ijms23116010 |
| [47] |
Heirani-Tabasi A, Hosseinzadeh S, Rabbani S, et al. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel. Biomed Mater. 2021;16(5):10.1088/1748-605X/ac0cbf. doi: 10.1088/1748-605X/ac0cbf |
| [48] |
Heirani-Tabasi A., Hosseinzadeh S., Rabbani S., et al. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel // Biomed Mater. 2021. Vol. 16, N 5. doi: 10.1088/1748-605X/ac0cbf |
| [49] |
Wei W, Ma Y, Yao X, et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater. 2020;6(4):998–1011. doi: 10.1016/j.bioactmat.2020.09.030 |
| [50] |
Wei W., Ma Y., Yao X., et al. Advanced hydrogels for the repair of cartilage defects and regeneration // Bioact Mater. 2020. Vol. 6, N 4. P. 998–1011. doi: 10.1016/j.bioactmat.2020.09.030 |
| [51] |
Huang J, Liu F, Su H, et al. Advanced nanocomposite hydrogels for cartilage tissue engineering. Gels. 2022;8(2):138. doi: 10.3390/gels8020138 |
| [52] |
Huang J., Liu F., Su H., et al. Advanced nanocomposite hydrogels for cartilage tissue engineering // Gels. 2022. Vol. 8, N 2. P. 138. doi: 10.3390/gels8020138 |
| [53] |
Wu J, Chen Q, Deng C, et al. Exquisite design of injectable hydrogels in cartilage repair. Theranostics. 2020;10(21):9843–9864. doi: 10.7150/thno.46450 |
| [54] |
Wu J., Chen Q., Deng C., et al. Exquisite design of injectable hydrogels in cartilage repair // Theranostics. 2020. Vol. 10, N 21. P. 9843–9864. doi: 10.7150/thno.46450 |
| [55] |
Schaeffer C, Pfaff BN, Cornell NJ, et al. Injectable microannealed porous scaffold for articular cartilage regeneration. Ann Plast Surg. 2020;84(6S Suppl. 5):S446–S450. doi: 10.1097/SAP.0000000000002271 |
| [56] |
Schaeffer C., Pfaff B.N., Cornell N.J., et al. Injectable microannealed porous scaffold for articular cartilage regeneration // Ann Plast Surg. 2020. Vol. 84, N 6S Suppl. 5. P. S446–S450. doi: 10.1097/SAP.0000000000002271 |
| [57] |
Yang J, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1–25. doi: 10.1016/j.actbio.2017.01.036 |
| [58] |
Yang J., Zhang Y.S., Yue K., Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering // Acta Biomater. 2017. Vol. 57. P. 1–25. doi: 10.1016/j.actbio.2017.01.036 |
| [59] |
Fu N, Dong T, Meng A, et al. Research progress of the types and preparation techniques of scaffold materials in cartilage tissue engineering. Curr Stem Cell Res Ther. 2018;13(7):583–590. doi: 10.2174/1574888X12666170718152611 |
| [60] |
Fu N., Dong T., Meng A., et al. Research progress of the types and preparation techniques of scaffold materials in cartilage tissue engineering // Curr Stem Cell Res Ther. 2018. Vol. 13, N 7. P. 583–590. doi: 10.2174/1574888X12666170718152611 |
| [61] |
Pascual-Garrido C, Rodriguez-Fontan F, Aisenbrey EA, et al. Current and novel injectable hydrogels to treat focal chondral lesions: properties and applicability. J Orthop Res. 2018;36(1):64–75. doi: 10.1002/jor.23760 |
| [62] |
Pascual-Garrido C., Rodriguez-Fontan F., Aisenbrey E.A., et al. Current and novel injectable hydrogels to treat focal chondral lesions: properties and applicability // J Orthop Res. 2018. Vol. 36, N 1. P. 64–75. doi: 10.1002/jor.23760 |
| [63] |
Zhu S, Li Y, He Z, et al. Advanced injectable hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol. 2022;10:954501. doi: 10.3389/fbioe.2022.954501 |
| [64] |
Zhu S., Li Y., He Z., et al. Advanced injectable hydrogels for cartilage tissue engineering // Front Bioeng Biotechnol. 2022. Vol. 10. P. 954501. doi: 10.3389/fbioe.2022.954501 |
| [65] |
Wang G, Cao X, Dong H, et al. A hyaluronic acid based injectable hydrogel formed via photo-crosslinking reaction and thermal-induced diels-alder reaction for cartilage tissue engineering. Polymers (Basel). 2018;10(9):949. doi: 10.3390/polym10090949 |
| [66] |
Wang G., Cao X., Dong H., et al. A hyaluronic acid based injectable hydrogel formed via photo-crosslinking reaction and thermal-induced diels-alder reaction for cartilage tissue engineering // Polymers (Basel). 2018. Vol. 10, N 9. P. 949. doi: 10.3390/polym10090949 |
| [67] |
Uzieliene I, Bironaite D, Pachaleva J, et al. Chondroitin sulfate-tyramine-based hydrogels for cartilage tissue repair. Int J Mol Sci. 2023;24(4):3451. doi: 10.3390/ijms24043451 |
| [68] |
Uzieliene I., Bironaite D., Pachaleva J., et al. Chondroitin sulfate-tyramine-based hydrogels for cartilage tissue repair // Int J Mol Sci. 2023. Vol. 24, N 4. P. 3451. doi: 10.3390/ijms24043451 |
| [69] |
Salehi S, Naghib SM, Garshasbi HR, et al. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: a review. Front Bioeng Biotechnol. 2023;11:1104126. doi: 10.3389/fbioe.2023.1104126 |
| [70] |
Salehi S., Naghib S.M., Garshasbi H.R., et al. Smart stimuli-responsive injectable gels and hydrogels for drug delivery and tissue engineering applications: a review // Front Bioeng Biotechnol. 2023. Vol. 11. P. 1104126. doi: 10.3389/fbioe.2023.1104126 |
| [71] |
Jeznach O, Kołbuk D, Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A. 2018;106(10):2762–2776. doi: 10.1002/jbm.a.36449 |
| [72] |
Jeznach O., Kołbuk D., Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration // J Biomed Mater Res A. 2018. Vol. 106, N 10. P. 2762–2776. doi: 10.1002/jbm.a.36449 |
| [73] |
Naranjo-Alcazar R, Bendix S, Groth T, et al. Research progress in enzymatically cross-linked hydrogels as injectable systems for bioprinting and tissue engineering. Gels. 2023;9(3):230. doi: 10.3390/gels9030230 |
| [74] |
Naranjo-Alcazar R., Bendix S., Groth T., Gallego Ferrer G. Research progress in enzymatically cross-linked hydrogels as injectable systems for bioprinting and tissue engineering // Gels. 2023. Vol. 9, N 3. P. 230. doi: 10.3390/gels9030230 |
| [75] |
Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today. 2020;18:100479. doi: 10.1016/j.apmt.2019.100479 |
| [76] |
Unagolla J.M., Jayasuriya A.C. Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives // Appl Mater Today. 2020. Vol. 18. P. 100479. doi: 10.1016/j.apmt.2019.100479 |
| [77] |
Roehm KD, Madihally SV. Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer. Biofabrication. 2017;10(1):015002. doi: 10.1088/1758-5090/aa96dd |
| [78] |
Roehm K.D., Madihally S.V. Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer // Biofabrication. 2017. Vol. 10, N 1. P. 015002. doi: 10.1088/1758-5090/aa96dd |
| [79] |
Liu Geever LM, Kennedy JE, et al. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. J Mech Behav Biomed Mater. 2010;3(2):203–209. doi: 10.1016/j.jmbbm.2009.07.001 |
| [80] |
Liu Y., Geever L.M., Kennedy J.E., et al. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels // J Mech Behav Biomed Mater. 2010. Vol. 3, N 2. P. 203–209. doi: 10.1016/j.jmbbm.2009.07.001 |
| [81] |
Adhikari Roy A, Das A, et al. Effects of processing parameters of 3d bioprinting on the cellular activity of bioinks. Macromol Biosci. 2021;21(1):e2000179. doi: 10.1002/mabi.202000179 |
| [82] |
Adhikari J., Roy A., Das A., et al. Effects of processing parameters of 3D bioprinting on the cellular activity of bioinks // Macromol Biosci. 2021. Vol. 21, N 1. P. e2000179. doi: 10.1002/mabi.202000179 |
| [83] |
Das S, Basu B. An overview of hydrogel-based bioinks for 3D bioprinting of soft tissues. J Indian Inst Sci. 2019;99(3):405–428. |
| [84] |
Das S., Basu B. An overview of hydrogel-based bioinks for 3D bioprinting of soft tissues // J Indian Inst Sci. 2019. Vol. 99, N 3. P. 405–428. doi: 10.1007/s41745-019-00129-5 |
| [85] |
Maiullari F, Costantini M, Milan M, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep. 2018;8(1):13532. doi: 10.1038/s41598-018-31848-x |
| [86] |
Maiullari F., Costantini M., Milan M., et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes // Sci Rep. 2018. Vol. 8, N 1. P. 13532. doi: 10.1038/s41598-018-31848-x |
| [87] |
Mouser VHM, Levato R, Mensinga A, et al. Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs. Connect Tissue Res. 2020;61(2):137–151. doi: 10.1080/03008207.2018.1553960 |
| [88] |
Mouser V.H.M., Levato R., Mensinga A., et al. Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs // Connect Tissue Res. 2020. Vol. 61, N 2. P. 137–151. doi: 10.1080/03008207.2018.1553960 |
| [89] |
Poldervaart MT, Goversen B, de Ruijter M, et al. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS One. 2017;12(6):e0177628. doi: 10.1371/journal.pone.0177628 |
| [90] |
Poldervaart M.T., Goversen B., De Ruijter M., et al. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity // PLoS One. 2017. Vol. 12, N 6. P. e0177628. doi: 10.1371/journal.pone.0177628 |
| [91] |
McHale MK, Setton LA, Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng. 2005;11(11-12):1768–1779. doi: 10.1089/ten.2005.11.1768 |
| [92] |
McHale M.K., Setton L.A., Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair // Tissue Eng. 2005. Vol. 11, N 11-12. P. 1768–1779. doi: 10.1089/ten.2005.11.1768 |
| [93] |
Xu Y, Xu Y, Bi B, et al. A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo. Acta Biomater. 2020;108:87–96. doi: 10.1016/j.actbio.2020.03.039 |
| [94] |
Xu Y., Xu Y., Bi B., et al. A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo // Acta Biomater. 2020. Vol. 108. P. 87–96. doi: 10.1016/j.actbio.2020.03.039 |
| [95] |
Ying H, Shen C, Pan R, et al. Strategy insight: mechanical properties of biomaterials’ influence on hydrogel-mesenchymal stromal cell combination for osteoarthritis therapy. Front Pharmacol. 2023;14:1152612. doi: 10.3389/fphar.2023.1152612 |
| [96] |
Ying H., Shen C., Pan R., et al. Strategy insight: mechanical properties of biomaterials’ influence on hydrogel-mesenchymal stromal cell combination for osteoarthritis therapy // Front Pharmacol. 2023. Vol. 14. P. 1152612. doi: 10.3389/fphar.2023.1152612 |
| [97] |
Fu Y, Zoetebier B, Both S, et al. Engineering of optimized hydrogel formulations for cartilage repair. Polymers (Basel). 2021;13(9):1526. doi: 10.3390/polym13091526 |
| [98] |
Fu Y., Zoetebier B., Both S., et al. Engineering of optimized hydrogel formulations for cartilage repair // Polymers (Basel). 2021. Vol. 13, N 9. P. 1526. doi: 10.3390/polym13091526 |
| [99] |
Jin Y, Koh RH, Kim SH, et al. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair. Mater Sci Eng C Mater Biol Appl. 2020;115:111096. doi: 10.1016/j.msec.2020.111096 |
| [100] |
Jin Y., Koh R.H., Kim S.H., et al. Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair // Mater Sci Eng C Mater Biol Appl. 2020. Vol. 115. P. 111096. doi: 10.1016/j.msec.2020.111096 |
| [101] |
Tsanaktsidou E, Kammona O, Kiparissides C. Recent developments in hyaluronic acid-based hydrogels for cartilage tissue engineering applications. Polymers (Basel). 2022;14(4):839. doi: 10.3390/polym14040839 |
| [102] |
Tsanaktsidou E., Kammona O., Kiparissides C. Recent developments in hyaluronic acid-based hydrogels for cartilage tissue engineering applications // Polymers (Basel). 2022. Vol. 14, N 4. P. 839. doi: 10.3390/polym14040839 |
| [103] |
Chen F, Yu S, Liu B, et al. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep. 2016;6:20014. doi: 10.1038/srep20014 |
| [104] |
Chen F., Yu S., Liu B., et al. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering // Sci Rep. 2016. Vol. 6. P. 20014. doi: 10.1038/srep20014 |
| [105] |
Li J, Huang Y, Song J, et al. Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel. Acta Biomater. 2018;79:202–215. doi: 10.1016/j.actbio.2018.08.029 |
| [106] |
Li J., Huang Y., Song J., et al. Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel // Acta Biomater. 2018. Vol. 79. P. 202–215. doi: 10.1016/j.actbio.2018.08.029 |
| [107] |
Lin H, Beck AM, Shimomura K, et al. Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. J Tissue Eng Regen Med. 2019;13(8):1418–1429. doi: 10.1002/term.2883 |
| [108] |
Lin H., Beck A.M., Shimomura K., et al. Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect // J Tissue Eng Regen Med. 2019. Vol. 13, N 8. P. 1418–1429. doi: 10.1002/term.2883 |
| [109] |
Yu F, Cao X, Li Y, et al. An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry”. Polym Chem. 2014;5(3):1082–1090. doi: 10.1039/c3py00869j |
| [110] |
Yu F., Cao X., Li Y., et al. An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry” // Polym Chem. 2014. Vol. 5, N 3. P. 1082–1090. doi: 10.1039/c3py00869j |
| [111] |
Park H, Choi B, Hu J, Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 2013;9(1):4779–4786. doi: 10.1016/j.actbio.2012.08.033 |
| [112] |
Park H., Choi B., Hu J., Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering // Acta Biomater. 2013. Vol. 9, N 1. P. 4779–4786. doi: 10.1016/j.actbio.2012.08.033 |
| [113] |
Płończak M, Wasyłeczko M, Jakutowicz T, et al. Intraarticular implantation of autologous chondrocytes placed on collagen or polyethersulfone scaffolds: an experimental study in rabbits. Polymers (Basel). 2023;15(10):2360. doi: 10.3390/polym15102360 |
| [114] |
Płończak M., Wasyłeczko M., Jakutowicz T., et al. Intraarticular implantation of autologous chondrocytes placed on collagen or polyethersulfone scaffolds: an experimental study in rabbits // Polymers (Basel). 2023. Vol. 15, N 10. P. 2360. doi: 10.3390/polym15102360 |
| [115] |
Hu M, Yang J, Xu J. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Drug Deliv. 2021;28(1):607–619. doi: 10.1080/10717544.2021.1895906 |
| [116] |
Hu M., Yang J., Xu J. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering // Drug Deliv. 2021. Vol. 28, N 1. P. 607–619. doi: 10.1080/10717544.2021.1895906 |
| [117] |
Chiang MY, Cheng IY, Chou SH, et al. A smart injectable composite hydrogel with magnetic navigation and controlled glutathione release for promoting in situ chondrocyte array and self-healing in damaged cartilage tissue. J Mater Chem B. 2021;9(45):9370–9382. doi: 10.1039/d1tb02030g |
| [118] |
Chiang M.Y., Cheng I.Y., Chou S.H., et al. A smart injectable composite hydrogel with magnetic navigation and controlled glutathione release for promoting in situ chondrocyte array and self-healing in damaged cartilage tissue // J Mater Chem B. 2021. Vol. 9, N 45. P. 9370–9382. doi: 10.1039/d1tb02030g |
| [119] |
Fattahpour S, Shamanian M, Tavakoli N, et al. An injectable carboxymethyl chitosan-methylcellulose-pluronic hydrogel for the encapsulation of meloxicam loaded nanoparticles. Int J Biol Macromol. 2020;151:220–229. doi: 10.1016/j.ijbiomac.2020.02.002 |
| [120] |
Fattahpour S., Shamanian M., Tavakoli N., et al. An injectable carboxymethyl chitosan-methylcellulose-pluronic hydrogel for the encapsulation of meloxicam loaded nanoparticles // Int J Biol Macromol. 2020. Vol. 151. P. 220–229. doi: 10.1016/j.ijbiomac.2020.02.002 |
| [121] |
Qi C, Liu J, Jin Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials. 2018;163:89–104. Corrected and republished from: Biomaterials. 2021;278:121134. doi: 10.1016/j.biomaterials.2018.02.016 |
| [122] |
Qi C., Liu J., Jin Y., et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage // Biomaterials. 2018. Vol. 163. P. 89–104. Corrected and republished from: Biomaterials. 2021. Vol. 278. P. 121134. doi: 10.1016/j.biomaterials.2018.02.016 |
| [123] |
Onofrillo C, Duchi S, Francis S, et al. FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation. Biomaterials. 2021;264:120383. doi: 10.1016/j.biomaterials.2020.120383 |
| [124] |
Onofrillo C., Duchi S., Francis S., et al. FLASH: Fluorescently LAbelled Sensitive Hydrogel to monitor bioscaffolds degradation during neocartilage generation // Biomaterials. 2021. Vol. 264. P. 120383. doi: 10.1016/j.biomaterials.2020.120383 |
| [125] |
Oprea M, Voicu SI. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr Polym. 2020;247:116683. doi: 10.1016/j.carbpol.2020.116683 |
| [126] |
Oprea M., Voicu S.I. Recent advances in composites based on cellulose derivatives for biomedical applications // Carbohydr Polym. 2020. Vol. 247. P. 116683. doi: 10.1016/j.carbpol.2020.116683 |
| [127] |
Yang Y, Lu YT, Zeng K, et al. Recent progress on cellulose-based ionic compounds for biomaterials. Adv Mater. 2021;33(28):e2000717. doi: 10.1002/adma.202000717 |
| [128] |
Yang Y., Lu Y.T., Zeng K., et al. Recent progress on cellulose-based ionic compounds for biomaterials // Adv Mater. 2021. Vol. 33, N 28. P. e2000717. doi: 10.1002/adma.202000717 |
| [129] |
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: a review. Mater Sci Eng C Mater Biol Appl. 2021;131:112489. doi: 10.1016/j.msec.2021.112489 |
| [130] |
Mellati A., Hasanzadeh E., Gholipourmalekabadi M., Enderami S.E. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: a review // Mater Sci Eng C Mater Biol Appl. 2021. Vol. 131. P. 112489. doi: 10.1016/j.msec.2021.112489 |
| [131] |
Boyer C, Figueiredo L, Pace R, et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater. 2018;65:112–122. doi: 10.1016/j.actbio.2017.11.027 |
| [132] |
Boyer C., Figueiredo L., Pace R., et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering // Acta Biomater. 2018. Vol. 65. P. 112–122. doi: 10.1016/j.actbio.2017.11.027 |
| [133] |
Boyer C, Réthoré G, Weiss P, et al. A self-setting hydrogel of silylated chitosan and cellulose for the repair of osteochondral defects: from in vitro characterization to preclinical evaluation in dogs. Front Bioeng Biotechnol. 2020;8:23. doi: 10.3389/fbioe.2020.00023 |
| [134] |
Boyer C., Réthoré G., Weiss P., et al. A self-setting hydrogel of silylated chitosan and cellulose for the repair of osteochondral defects: from in vitro characterization to preclinical evaluation in dogs // Front Bioeng Biotechnol. 2020. Vol. 8. P. 23. doi: 10.3389/fbioe.2020.00023 |
| [135] |
Zoetebier B, Schmitz TC, Ito K, et al. Injectable hydrogels for articular cartilage and nucleus pulposus repair: status quo and prospects. Tissue Eng Part A. 2022;28(11-12):478–499. doi: 10.1089/ten.TEA.2021.0226 |
| [136] |
Zoetebier B., Schmitz T.C., Ito K., et al. Injectable hydrogels for articular cartilage and nucleus pulposus repair: status quo and prospects // Tissue Eng Part A. 2022. Vol. 28, N 11-12. P. 478–499. doi: 10.1089/ten.TEA.2021.0226 |
| [137] |
Al-Sabah A, Burnell SEA, Simoes IN, et al. Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydr Polym. 2019;212:242–251. doi: 10.1016/j.carbpol.2019.02.057 |
| [138] |
Al-Sabah A., Burnell S.E.A., Simoes I.N., et al. Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering // Carbohydr Polym. 2019. Vol. 212. P. 242–251. doi: 10.1016/j.carbpol.2019.02.057 |
| [139] |
Guo X, Xi L, Yu M, et al. Regeneration of articular cartilage defects: therapeutic strategies and perspectives. J Tissue Eng. 2023;14:20417314231164765. doi: 10.1177/20417314231164765 |
| [140] |
Guo X., Xi L., Yu M., et al. Regeneration of articular cartilage defects: theapeutic strategies and perspectives // J Tissue Eng. 2023. Vol. 14. P. 20417314231164765. doi: 10.1177/2041731423116476 |
| [141] |
Schneider MC, Chu S, Randolph MA, Bryant SJ. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3. Acta Biomater. 2019;93:97–110. doi: 10.1016/j.actbio.2019.03.046 |
| [142] |
Schneider M.C., Chu S., Randolph M.A., Bryant S.J. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3 // Acta Biomater. 2019. Vol. 93. P. 97–110. doi: 10.1016/j.actbio.2019.03.046 |
| [143] |
Bozhokin MS, Sopova YV, Kachkin DV, et al. Mechanisms of TGFβ3 action as a therapeutic agent for promoting the synthesis of extracellular matrix proteins in hyaline cartilage. Biochemistry (Mosc). 2020;85(4):436–447. doi: 10.1134/S0006297920040045 |
| [144] |
Bozhokin M.S., Sopova Y.V., Kachkin D.V., et al. Mechanisms of TGFβ3 action as a therapeutic agent for promoting the synthesis of extracellular matrix proteins in hyaline cartilage // Biochemistry (Mosc). 2020. Vol. 85, N 4. P. 436–447. doi: 10.1134/S0006297920040045 |
| [145] |
Chen Wei L, Su X, et al. Preparation and characterization of biomimetic functional scaffold with gradient structure for osteochondral defect repair. Bioengineering (Basel). 2023;10(2):213. doi: 10.3390/bioengineering10020213 |
| [146] |
Chen L., Wei L., Su X., et al. Preparation and characterization of biomimetic functional scaffold with gradient structure for osteochondral defect repair // Bioengineering (Basel). 2023. Vol. 10, N 2. P. 213. doi: 10.3390/bioengineering10020213 |
| [147] |
Bianchi VJ, Lee A, Anderson J, et al. Redifferentiated chondrocytes in fibrin gel for the repair of articular cartilage lesions. Am J Sports Med. 2019;47(10):2348–2359. doi: 10.1177/0363546519857571 |
| [148] |
Bianchi V.J., Lee A., Anderson J., et al. Redifferentiated chondrocytes in fibrin gel for the repair of articular cartilage lesions // Am J Sports Med. 2019. Vol. 47, N 10. P. 2348–2359. doi: 10.1177/0363546519857571 |
| [149] |
Losi P, Briganti E, Sanguinetti E, Briganti E. Healing effect of a fibrin-based scaffold loaded with platelet lysate in full-thickness skin wounds. J Bioact Compat Polym. 2015;30(2):222–237. doi: 10.1177/0883911514568436 |
| [150] |
Losi P., Briganti E., Sanguinetti E., Briganti E. Healing effect of a fibrin-based scaffold loaded with platelet lysate in full-thickness skin wounds // J Bioact Compat Polym. 2015. Vol. 30, N 2. P. 222–237. doi: 10.1177/0883911514568436 |
| [151] |
Bolandi B, Imani R, Bonakdar S, Fakhrzadeh H. Chondrogenic stimulation in mesenchymal stem cells using scaffold-based sustained release of platelet-rich plasma. J Appl Polym Sci. 2021;138(12): 50075. doi: 10.1002/app.50075 |
| [152] |
Bolandi B., Imani R., Bonakdar S., Fakhrzadeh H. Chondrogenic stimulation in mesenchymal stem cells using scaffold-based sustained release of platelet-rich plasma // J Appl Polym Sci. 2021. Vol. 138, N 12. P. 50075. doi: 10.1002/app.50075 |
| [153] |
Wu S, Guo W, Li R, et al. Progress of platelet derivatives for cartilage tissue engineering. Front Bioeng Biotechnol. 2022;10:907356. doi: 10.3389/fbioe.2022.907356 |
| [154] |
Wu S., Guo W., Li R., et al. Progress of platelet derivatives for cartilage tissue engineering // Front Bioeng Biotechnol. 2022. Vol. 10. P. 907356. doi: 10.3389/fbioe.2022.907356 |
| [155] |
Yan W, Xu X, Xu Q, et al. Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6-month follow-up. Regen Biomater. 2020;7(1):77–90. doi: 10.1093/rb/rbz039 |
| [156] |
Yan W., Xu X., Xu Q., et al. Platelet-rich plasma combined with injectable hyaluronic acid hydrogel for porcine cartilage regeneration: a 6-month follow-up // Regen Biomater. 2020. Vol. 7, N 1. P. 77–90. doi: 10.1093/rb/rbz039 |
| [157] |
Li Y, Wang X, Han Y, et al. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater. 2021;16(2):022003. doi: 10.1088/1748-605X/abc0b3 |
| [158] |
Li Y., Wang X., Han Y., et al. Click chemistry-based biopolymeric hydrogels for regenerative medicine // Biomed Mater. 2021. Vol. 16, N 2. P. 022003. doi: 10.1088/1748-605X/abc0b3 |
| [159] |
Tang Q, Lim T, Shen LY, et al. Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application. Biomaterials. 2021;268:120605. doi: 10.1016/j.biomaterials.2020.120605 |
| [160] |
Tang Q., Lim T., Shen L.Y., et al. Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application // Biomaterials. 2021. Vol. 268. P. 120605. doi: 10.1016/j.biomaterials.2020.120605 |
| [161] |
Rojas-Murillo JA, Simental-Mendía MA, Moncada-Saucedo NK, et al. Physical, mechanical, and biological properties of fibrin scaffolds for cartilage repair. Int J Mol Sci. 2022;23(17):9879. doi: 10.3390/ijms23179879 |
| [162] |
Rojas-Murillo J.A., Simental-Mendía M.A., Moncada-Saucedo N.K., et al. Physical, mechanical, and biological properties of fibrin scaffolds for cartilage repair // Int J Mol Sci. 2022. Vol. 23, N 17. P. 9879. doi: 10.3390/ijms23179879 |
| [163] |
Berninger MT, Wexel G, Rummeny EJ, et al. Treatment of osteochondral defects in the rabbit’s knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. J Vis Exp. 2013;(75):e4423. doi: 10.3791/4423 |
| [164] |
Berninger M.T., Wexel G., Rummeny E.J., et al. Treatment of osteochondral defects in the rabbit’s knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots // J Vis Exp. 2013. N 75. P. 4423. doi: 10.3791/4423 |
| [165] |
Dahlgren LA. Cartilage resurfacing: unresolved enigma. Commentary on an article by Goodrich LR, et al.: Addition of mesenchymal stem cells to autologous platelet-enhanced fibrin scaffolds in chondral defects. does it enhance repair? J Bone Joint Surg Am. 2016;98(1):e5. doi: 10.2106/JBJS.O.00925 |
| [166] |
Dahlgren L.A. Cartilage resurfacing: unresolved enigma. Commentary on an article by Goodrich L.R., et al.: Addition of mesenchymal stem cells to autologous platelet-enhanced fibrin scaffolds in chondral defects. does it enhance repair? // J Bone Joint Surg Am. 2016. Vol. 98, N 1. P. e5. doi: 10.2106/JBJS.O.00925 |
| [167] |
Binder H, Hoffman L, Zak L, et al. Clinical evaluation after matrix-associated autologous chondrocyte transplantation: a comparison of four different graft types. Bone Joint Res. 2021;10(7):370–379. doi: 10.1302/2046-3758.107.BJR-2020-0370.R1 |
| [168] |
Binder H., Hoffman L., Zak L., et al. Clinical evaluation after matrix-associated autologous chondrocyte transplantation: a comparison of four different graft types // Bone Joint Res. 2021. Vol. 10, N 7. P. 370–379. doi: 10.1302/2046-3758.107.BJR-2020-0370.R1 |
| [169] |
Eschen C, Kaps C, Widuchowski W, et al. Clinical outcome is significantly better with spheroid-based autologous chondrocyte implantation manufactured with more stringent cell culture criteria. Osteoarthr Cartil Open. 2020;2(1):100033. doi: 10.1016/j.ocarto.2020.100033 |
| [170] |
Eschen C., Kaps C., Widuchowski W., et al. Clinical outcome is significantly better with spheroid-based autologous chondrocyte implantation manufactured with more stringent cell culture criteria // Osteoarthr Cartil Open. 2020. Vol. 2, N 1. P. 100033. doi: 10.1016/j.ocarto.2020.100033 |
| [171] |
Madeira C, Santhagunam A, Salgueiro JB, Cabral JM. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol. 2015;33(1):35–42. doi: 10.1016/j.tibtech.2014.11.003 |
| [172] |
Madeira C., Santhagunam A., Salgueiro J.B., Cabral J.M. Advanced cell therapies for articular cartilage regeneration // Trends Biotechnol. 2015. Vol. 33, N 1. P. 35–42. doi: 10.1016/j.tibtech.2014.11.003 |
| [173] |
Inui A, Iwakura T, Reddi AH. Human stem cells and articular cartilage regeneration. Cells. 2012;1(4):994–1009. doi: 10.3390/cells1040994 |
| [174] |
Inui A., Iwakura T., Reddi A.H. Human stem cells and articular cartilage regeneration // Cells. 2012. Vol. 1, N 4. P. 994–1009. doi: 10.3390/cells1040994 |
| [175] |
Eremeev AV, Zubkova OA, Ruchko ES, et al. Key parameters of autologous biomedical product for cartilage tissue repair. Medicine of Extreme Situations. 2020;22(4):59–66. EDN: OQVWAH doi: 10.47183/mes.2020.014 |
| [176] |
Еремеев А.В., Зубкова О.А., Ручко Е.С., и др. Ключевые характеристики аутологичного биомедицинского продукта для коррекции дефекта хрящевой ткани // Медицина экстремальных ситуаций. 2020. Т. 22, № 4. С. 59–66. EDN: OQVWAH doi: 10.47183/mes.2020.014 |
| [177] |
Zhou S, Bei Z, Wei J, et al. Mussel-inspired injectable chitosan hydrogel modified with catechol for cell adhesion and cartilage defect repair. J Mater Chem B. 2022;10(7):1019–1030. doi: 10.1039/d1tb02241e |
| [178] |
Zhou S., Bei Z., Wei J., et al. Mussel-inspired injectable chitosan hydrogel modified with catechol for cell adhesion and cartilage defect repair // J Mater Chem B. 2022. Vol. 10, N 7. P. 1019–1030. doi: 10.1039/d1tb02241e |
| [179] |
Lietman SA. Induced pluripotent stem cells in cartilage repair. World J Orthop. 2016;7(3):149–155. doi: 10.5312/wjo.v7.i3.149 |
| [180] |
Lietman S.A. Induced pluripotent stem cells in cartilage repair // World J Orthop. 2016. Vol. 7, N 3. P. 149–155. doi: 10.5312/wjo.v7.i3.149 |
| [181] |
Kimura T, Yamashita A, Ozono K, Tsumaki N. Limited Immunogenicity of human induced pluripotent stem cell-derived cartilages. Tissue Eng Part A. 2016;22(23-24):1367–1375. doi: 10.1089/ten.TEA.2016.0189 |
| [182] |
Kimura T., Yamashita A., Ozono K., Tsumaki N. Limited immunogenicity of human induced pluripotent stem cell-derived cartilages // Tissue Eng Part A. 2016. Vol. 22, N 23–24. P. 1367–1375. doi: 10.1089/ten.TEA.2016.0189 |
| [183] |
Chen W, Li C, Peng M, et al. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration. Cell Tissue Bank. 2018;19(1):35–46. doi: 10.1007/s10561-017-9649-y |
| [184] |
Chen W., Li C., Peng M., et al. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration // Cell Tissue Bank. 2018. Vol. 19, N 1. P. 35–46. doi: 10.1007/s10561-017-9649-y |
| [185] |
Wu CL, Dicks A, Steward N, et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis. Nat Commun. 2021;12(1):362. doi: 10.1038/s41467-020-20598-y |
| [186] |
Wu C.L., Dicks A., Steward N., et al. Single cell transcriptomic analysis of human pluripotent stem cell chondrogenesis // Nat Commun. 2021. Vol. 12, N 1. P. 362. doi: 10.1038/s41467-020-20598-y |
| [187] |
Bogomyakova ME, Eremeev AV, Lagarkova MA. At home among strangers: is it possible to create hypoimmunogenic pluripotent stem cell lines? Molecular Biology. 2019;53(5): 638–652. EDN: ODQOJP doi: 10.1134/S0026898419050045 |
| [188] |
Богомякова М.Е., Еремеев А.В., Лагарькова М.А. «Свой среди чужих»: можно ли создать гипоиммуногенные линии плюрипотентных стволовых клеток? // Молекулярная биология. 2019. Т. 53, № 5. С. 725–740. EDN: ODQOJP doi: 10.1134/S0026898419050045 |
Eco-Vector
/
| 〈 |
|
〉 |