The caspase family: molecular bases of interaction in apoptosis and pyroptosis

Viktoria V. Shishkina , Ivan P. Moshurov , Olga A. Gerasimova , Lyubov N. Antakova , Tatiana V. Samoilenko , Nataliya V. Korotkih , Elena S. Gorushkina , Pavel Yu. Andreev , Dmitri A. Atiakshin

Genes & Cells ›› 2024, Vol. 19 ›› Issue (1) : 153 -168.

PDF
Genes & Cells ›› 2024, Vol. 19 ›› Issue (1) : 153 -168. DOI: 10.17816/gc569246
Reviews
review-article

The caspase family: molecular bases of interaction in apoptosis and pyroptosis

Author information +
History +
PDF

Abstract

Both apoptotic and inflammatory caspases play a significant role in developing and maintaining an organism’s homeostasis. Recently, various studies have described various cross-interactions among various caspases. For instance, interleukin-1β activation is initiated by caspase-1 and caspase-8. Programmed cell death is launched not exclusively by internal and external factors to serve as a foundation for physiological development and realization of cellular and organism functions. The caspases involved in this process provide a complicated function related to cell homeostasis regulation. Caspases also participate in adaptation processes associated with changing environmental conditions, including microgravity.

Phenotypical analysis of knockdown laboratory animals can reveal the physiological functions of caspases, giving preference to mice. For instance, this approach allows us to determine the role of caspases in the pathogenesis of different pathologic conditions, such as malignancies and autoimmune and infectious diseases. Caspases are considered by a wide spectrum of authors as therapeutic targets.

In general, the topic of caspases and their functions is very broad. In this review, we only discuss some aspects of the impact of caspases on various types of cell death.

Keywords

caspases / apoptosis / inflammation / pyroptosis / COVID-19 / lung pathology / microgravity

Cite this article

Download citation ▾
Viktoria V. Shishkina, Ivan P. Moshurov, Olga A. Gerasimova, Lyubov N. Antakova, Tatiana V. Samoilenko, Nataliya V. Korotkih, Elena S. Gorushkina, Pavel Yu. Andreev, Dmitri A. Atiakshin. The caspase family: molecular bases of interaction in apoptosis and pyroptosis. Genes & Cells, 2024, 19(1): 153-168 DOI:10.17816/gc569246

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50(6):1352–1364. doi: 10.1016/j.immuni.2019.05.020

[2]

Van Opdenbosch N., Lamkanfi M. Caspases in cell death, inflammation, and disease // Immunity. 2019. Vol. 50, N 6. P. 1352–1364. doi: 10.1016/j.immuni. 2019.05.020

[3]

Mandal R, Barrón JC, Kostova I, et al. Caspase-8: the double-edged sword. Biochim Biophys Acta Rev Cancer. 2020;1873(2):188357. doi: 10.1016/j.bbcan.2020.188357

[4]

Mandal R., Barrón J.C., Kostova I., et al. Caspase-8: the double-edged sword // Biochim Biophys Acta Rev Cancer. 2020. Vol. 1873, N 2. P. 188357. doi: 10.1016/j.bbcan.2020.188357

[5]

Sahoo G, Samal D, Khandayataray P, Murthy MK. A review on caspases: key regulators of biological activities and apoptosis. Mol Neurobiol. 2023;60(10):5805–5837. doi: 10.1007/s12035-023-03433-5

[6]

Sahoo G., Samal D., Khandayataray P., Murthy M.K. A review on caspases: key regulators of biological activities and apoptosis // Mol Neurobiol. 2023. Vol. 60, N 10. P. 5805–5837. doi: 10.1007/s12035-023-03433-5

[7]

Eskandari E, Eaves CJ. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J Cell Biol. 2022;221(6):e202201159. doi: 10.1083/jcb.202201159

[8]

Eskandari E., Eaves C.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis // J Cell Biol. 2022. Vol. 221, N 6. P. e202201159. doi: 10.1083/jcb.202201159

[9]

Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs. Cell Death Dis. 2022;13(9):834. doi: 10.1038/s41419-022-05270-1

[10]

Zhao Y, Dhani S, Zhivotovsky B. Unveiling caspase-2 regulation by non-coding RNAs // Cell Death Dis. 2022. Vol. 13, N 9. P. 834. doi: 10.1038/s41419-022-05270-1

[11]

Di Sano F, Ferraro E, Tufi R, et al. Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem. 2006;281(5):2693–2700. doi: 10.1074/jbc.M509110200

[12]

Di Sano F., Ferraro E., Tufi R., et al. Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism // J Biol Chem. 2006. Vol. 281, N 5. P. 2693–2700. doi: 10.1074/jbc.M509110200

[13]

Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci. 2003;1010:186–194. doi: 10.1196/annals.1299.032

[14]

Szegezdi E., Fitzgerald U., Samali A. Caspase-12 and ER-stress-mediated apoptosis: the story so far // Ann N Y Acad Sci. 2003. Vol. 1010. P. 186–194. doi: 10.1196/annals.1299.032

[15]

Liu L, Chen M, Lin K, et al. Inhibiting caspase-12 mediated inflammasome activation protects against oxygen-glucose deprivation injury in primary astrocytes. Int J Med Sci. 2020;17(13):1936–1945. doi: 10.7150/ijms.44330

[16]

Liu L., Chen M., Lin K., et al. Inhibiting caspase-12 mediated inflammasome activation protects against oxygen-glucose deprivation injury in primary astrocytes // Int J Med Sci. 2020. Vol. 17, N 13. P. 1936–1945. doi: 10.7150/ijms.44330

[17]

García de la Cadena S, Massieu L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis. 2016;21(7):763–777. doi: 10.1007/s10495-016-1247-0

[18]

García de la Cadena S., Massieu L. Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12 // Apoptosis. 2016. Vol. 21, N 7. P. 763–777. doi: 10.1007/s10495-016-1247-0

[19]

Zhang X, Xu J, Marshall B, et al. The role of caspase-12 in retinal bystander cell death and innate immune responses against MCMV retinitis. Int J Mol Sci. 2021;22(15):8135. doi: 10.3390/ijms22158135

[20]

Zhang X., Xu J., Marshall B., et al. The role of caspase-12 in retinal bystander cell death and innate immune responses against MCMV retinitis // Int J Mol Sci. 2021. Vol. 22, N 15. P. 8135. doi: 10.3390/ijms22158135

[21]

Djatlova AS, Dudkov AV, Lin’kova NS, Havinson VH. Molecular markers of caspase-dependent and mitochondrial apoptosis: the role of pathology and cell senescence. Uspekhi sovremennoi biologii. 2018;138(2):126–137. EDN: XMRNSH doi: 10.7868/S0042132418020023

[22]

Дятлова А.С., Дудков А.В., Линькова Н.С., Хавинсон В.Х. Молекулярные маркеры каспаза-зависимого и митохондриального апоптоза: роль в развитии патологии и в процессах клеточного старения // Успехи современной биологии. 2018. Т. 138, № 2. С. 126–137. doi: 10.7868/S0042132418020023 EDN XMRNSH

[23]

Shrestha S, Clark AC. Evolution of the folding landscape of effector caspases. J Biol Chem. 2021;297(5):101249. doi: 10.1016/j.jbc.2021.101249

[24]

Shrestha S., Clark A.C. Evolution of the folding landscape of effector caspases // J Biol Chem. 2021. Vol. 297, N 5. P. 101249. doi: 10.1016/j.jbc.2021.101249

[25]

Babaev MSh, Gusejnova NT, Mamedova RF. Znachenie apoptoza i mehanizmy gibeli kletok. Eurasian Union of Scientists. 2019;2-3:25–28. (In Russ). EDN: UBSMAT doi: 10.31618/ESU.2413-9335.2019.3.59.25-28

[26]

Бабаев М.Ш., Гусейнова Н.Т., Мамедова Р.Ф. Значение апоптоза и механизмы гибели клеток // Евразийский союз ученых. 2019. № 2-3. С. 25–28. doi: 10.31618/ESU.2413-9335.2019.3.59.25-28 EDN: UBSMAT

[27]

Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257. doi: 10.1038/bjc.1972.33

[28]

Kerr J.F., Wyllie A.H., Currie A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics // Br J Cancer. 1972. Vol. 26, N 4. P. 239–257. doi: 10.1038/bjc.1972.33

[29]

Deyev RV, Bilyalov AI, Zhampeisov TM. Modern ideas about cell death. Genes & cells. 2018;13(1):6–19. EDN: YNQDVJ doi: 10.23868/201805001

[30]

Деев Р.В., Билялов А.И., Жампеисов Т.М. Современные представления о клеточной гибели // Гены и Клетки. 2018. Т. 13, № 1. С. 6–19. doi: 10.23868/201805001 EDN: YNQDVJ

[31]

Yanumula A, Cusick JK. Biochemistry, extrinsic pathway of apoptosis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. PMID: 32809646.

[32]

Yanumula A., Cusick J.K. Biochemistry, Extrinsic pathway of apoptosis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022.

[33]

Schleich K, Buchbinder JH, Pietkiewicz S, et al. Molecular architecture of the DED chains at the DISC: regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain. Cell Death Differ. 2016;23(4):681–694. doi: 10.1038/cdd.2015.137

[34]

Schleich K., Buchbinder J.H., Pietkiewicz S., et al. Molecular architecture of the DED chains at the DISC: regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain // Cell Death Differ. 2016. Vol. 23, N 4. P. 681–694. doi: 10.1038/cdd.2015.137

[35]

Beroske L, Van den Wyngaert T, Stroobants S, et al. Molecular imaging of apoptosis: the case of caspase-3 radiotracers. Int J Mol Sci. 2021;22(8):3948. doi: 10.3390/ijms22083948

[36]

Beroske L., Van den Wyngaert T., Stroobants S., et al. Molecular imaging of apoptosis: the case of caspase-3 radiotracers // Int J Mol Sci. 2021. Vol. 22, N 8. P. 3948. doi: 10.3390/ijms22083948

[37]

Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. doi: 10.1038/s41418-017-0012-4

[38]

Galluzzi L., Vitale I., Aaronson S.A., et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018 // Cell Death Differ. 2018. Vol. 25, N 3. P. 486–541. doi: 10.1038/s41418-017-0012-4

[39]

Zamaraev AV, Kopeina GS, Prokhorova EA, et al. Post-translational modification of caspases: the other side of apoptosis regulation. Trends Cell Biol. 2017;27(5):322–339. doi: 10.1016/j.tcb.2017.01.003

[40]

Zamaraev A.V., Kopeina G.S., Prokhorova E.A., et al. Post-translational modification of caspases: the other side of apoptosis regulation // Trends Cell Biol. 2017. Vol. 27, N 5. P. 322–339. doi: 10.1016/j.tcb.2017.01.003

[41]

Valmiki MG, Ramos JW. Death effector domain-containing proteins. Cell Mol Life Sci. 2009;66(5):814–830. doi: 10.1007/s00018-008-8489-0

[42]

Valmiki M.G., Ramos J.W. Death effector domain-containing proteins // Cell Mol Life Sci. 2009. Vol. 66, N 5. P. 814–830. doi: 10.1007/s00018-008-8489-0

[43]

Han JH, Tweedell RE, Kanneganti TD. Evaluation of caspase activation to assess innate immune cell death. J Vis Exp. 2023;(191):10.3791/64308. doi: 10.3791/64308

[44]

Han J.H., Tweedell R.E., Kanneganti T.D. Evaluation of caspase activation to assess innate immune cell death // J Vis Exp. 2023. N 191. P. 10.3791/64308. doi: 10.3791/64308

[45]

Horn S, Hughes MA, Schilling R, et al. Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-κB activation and cell survival. Cell Rep. 2017;19(4):785–797. doi: 10.1016/j.celrep.2017.04.010

[46]

Horn S., Hughes M.A., Schilling R., et al. Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-κB activation and cell survival // Cell Rep. 2017. Vol. 19, N 4. P. 785–797. doi: 10.1016/j.celrep.2017.04.010

[47]

Tanzer MC, Khan N, Rickard JA, et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death Differ. 2017;24(3):481–491. doi: 10.1038/cdd.2016.147

[48]

Tanzer M.C., Khan N., Rickard J.A., et al. Combination of IAP antagonist and IFNγ activates novel caspase-10- and RIPK1-dependent cell death pathways // Cell Death Differ. 2017. Vol. 24, N 3. P. 481–491. doi: 10.1038/cdd.2016.147

[49]

Ramirez MLG, Salvesen GS. A primer on caspase mechanisms. Semin Cell Dev Biol. 2018;82:79–85. doi: 10.1016/j.semcdb.2018.01.002

[50]

Ramirez M.L.G., Salvesen G.S. A primer on caspase mechanisms // Semin Cell Dev Biol. 2018. Vol. 82. P. 79–85. doi: 10.1016/j.semcdb.2018.01.002

[51]

Jost PJ, Grabow S, Gray D, et al. XIAP discriminates between type I and type II FAS-induced apoptosis. Nature. 2009;460(7258):1035–1039. doi: 10.1038/nature08229

[52]

Jost P.J., Grabow S., Gray D., et al. XIAP discriminates between type I and type II FAS-induced apoptosis // Nature. 2009. Vol. 460, N 7258. P. 1035–1039. doi: 10.1038/nature08229

[53]

Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol. 2020;38:567–595. doi: 10.1146/annurev-immunol-073119-095439

[54]

Kesavardhana S., Malireddi R.K.S., Kanneganti T.D. Caspases in cell death, inflammation, and pyroptosis // Annu Rev Immunol. 2020. Vol. 38. P. 567–595. doi: 10.1146/annurev-immunol-073119-095439

[55]

Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63. doi: 10.1038/nrm3722

[56]

Czabotar P.E., Lessene G., Strasser A., Adams J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy // Nat Rev Mol Cell Biol. 2014. Vol. 15, N 1. P. 49–63. doi: 10.1038/nrm3722

[57]

Kuida K. Caspase-9. Int J Biochem Cell Biol. 2000;32(2):121–124. doi: 10.1016/s1357-2725(99)00024-2

[58]

Kuida K. Caspase-9 // Int J Biochem Cell Biol. 2000. Vol. 32, N 2. P. 121–124. doi: 10.1016/s1357-2725(99)00024-2

[59]

McComb S, Chan PK, Guinot A, et al. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Sci Adv. 2019;5(7):eaau9433. doi: 10.1126/sciadv.aau9433

[60]

McComb S., Chan P.K., Guinot A., et al. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7 // Sci Adv. 2019. Vol. 5, N 7. P. eaau9433. doi: 10.1126/sciadv.aau9433

[61]

Dhani S, Zhao Y, Zhivotovsky B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis. 2021;12(10):949. doi: 10.1038/s41419-021-04240-3

[62]

Dhani S., Zhao Y., Zhivotovsky B. A long way to go: caspase inhibitors in clinical use // Cell Death Dis. 2021. Vol. 12, N 10. P. 949. doi: 10.1038/s41419-021-04240-3

[63]

Hu B, Elinav E, Huber S, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc Natl Acad Sci USA. 2010;107(50):21635–21640. doi: 10.1073/pnas.1016814108

[64]

Hu B., Elinav E., Huber S., et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4 // Proc Natl Acad Sci USA. 2010. Vol. 107, N 50. P. 21635–21640. doi: 10.1073/pnas.1016814108

[65]

Casson CN, Yu J, Reyes VM, et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc Natl Acad Sci U S A. 2015;112(21):6688–6693. doi: 10.1073/pnas.1421699112

[66]

Casson C.N., Yu. J., Reyes V.M., et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens // Proc Natl Acad Sci U S A. 2015. Vol. 112, N 21. P. 6688–6693. doi: 10.1073/pnas.1421699112

[67]

Garanina EE, Martynova EV, Ivanov KY, et al. Inflammasomes: role in disease pathogenesis and therapeutic potential. Uchenye zapiski kazanskogo universiteta. Seriya estestvennye nauki. 2020;162(1):80–111. EDN: CFDRQF doi: 10.26907/2542-064X.2020.1.80-111

[68]

Гаранина Е.Е., Мартынова Е.В., Иванов К.Я., и др. Инфламмасомы: роль в патогенезе заболеваний и терапевтический потенциал // Ученые записки Казанского университета. Серия: Естественные науки. 2020. Т. 162, № 1. С. 80–111. doi: 10.26907/2542-064X.2020.1.80-111 EDN: CFDRQF

[69]

Oh C, Verma A, Aachoui Y. Caspase-11 Non-canonical Inflammasomes in the Lung. Front Immunol. 2020;11:1895. doi: 10.3389/fimmu.2020.01895

[70]

Oh C., Verma A., Aachoui Y. Caspase-11 non-canonical Inflammasomes in the lung // Front Immunol. 2020. Vol. 11. P. 1895. doi: 10.3389/fimmu.2020.01895

[71]

De Souza JG, Starobinas N, Ibañez OCM. Unknown/enigmatic functions of extracellular ASC. Immunology. 2021;163(4):377–388. doi: 10.1111/imm.13375

[72]

de Souza J.G., Starobinas N., Ibañez O.C.M. Unknown/enigmatic functions of extracellular ASC // Immunology. 2021. Vol. 163, N 4. P. 377–388. doi: 10.1111/imm.13375

[73]

Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128. doi: 10.1038/s41392-021-00507-5

[74]

Yu P., Zhang X., Liu N., et al. Pyroptosis: mechanisms and diseases // Signal Transduct Target Ther. 2021. Vol. 6, N 1. P. 128. doi: 10.1038/s41392-021-00507-5

[75]

Hsu SK, Li CY, Lin IL, et al. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics. 2021;11(18):8813–8835. doi: 10.7150/thno.62521

[76]

Hsu S.K., Li C.Y., Lin I.L., et al. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment // Theranostics. 2021. Vol. 11, N 18. P. 8813–8835. doi: 10.7150/thno.62521

[77]

Eltobgy MM, Zani A, Kenney AD, et al. Caspase-4/11 exacerbates disease severity in SARS-CoV-2 infection by promoting inflammation and immunothrombosis. Proc Natl Acad Sci U S A. 2022;119(21):e2202012119. doi: 10.1073/pnas.2202012119

[78]

Eltobgy M.M., Zani A., Kenney A.D., et al. Caspase-4/11 exacerbates disease severity in SARS-CoV-2 infection by promoting inflammation and immunothrombosis // Proc Natl Acad Sci USA. 2022. Vol. 119, N 21. P. e2202012119. doi: 10.1073/pnas.2202012119

[79]

Zhang X, Dowling JP, Zhang J. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development. Cell Death Dis. 2019;10(3):245. doi: 10.1038/s41419-019-1490-8

[80]

Zhang X., Dowling J.P., Zhang J. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development // Cell Death Dis. 2019. Vol. 10, N 3. P. 245. doi: 10.1038/s41419-019-1490-8

[81]

Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J. 2021;40(5):e106700. doi: 10.15252/embj.2020106700

[82]

Kist M., Vucic D. Cell death pathways: intricate connections and disease implications // EMBO J. 2021. Vol. 40, N 5. P. e106700. doi: 10.15252/embj.2020106700

[83]

Place DE, Lee S, Kanneganti TD. PANoptosis in microbial infection. Curr Opin Microbiol. 2021;59:42–49. doi: 10.1016/j.mib.2020.07.012

[84]

Place D.E., Lee S., Kanneganti T.D. PANoptosis in microbial infection // Curr Opin Microbiol. 2021. Vol. 59. P. 42–49. doi: 10.1016/j.mib.2020.07.012

[85]

Orning P, Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J Leukoc Biol. 2021;109(1):121–141. doi: 10.1002/JLB.3MR0420-305R

[86]

Orning P., Lien E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity // J Leukoc Biol. 2021. Vol. 109, N 1. P. 121–141. doi: 10.1002/JLB.3MR0420-305R

[87]

Ketelut-Carneiro N, Ghosh S, Levitz SM, et al. A dectin-1-caspase-8 pathway licenses canonical caspase-1 inflammasome activation and interleukin-1β release in response to a pathogenic fungus. J Infect Dis. 2018;217(2):329–339. doi: 10.1093/infdis/jix568

[88]

Ketelut-Carneiro N., Ghosh S., Levitz S.M., et al. A dectin-1-caspase-8 pathway licenses canonical caspase-1 inflammasome activation and interleukin-1β release in response to a pathogenic fungus // J Infect Dis. 2018. Vol. 217, N 2. P. 329–339. doi: 10.1093/infdis/jix568

[89]

Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018;362(6418):1064–1069. doi: 10.1126/science.aau2818

[90]

Orning P., Weng D., Starheim K., et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death // Science. 2018. Vol. 362, N 6418. P. 1064–1069. doi: 10.1126/science.aau2818

[91]

Jiang M, Qi L, Li L, et al. Caspase-8: a key protein of cross-talk signal way in “PANoptosis” in cancer. Int J Cancer. 2021;149(7):1408–1420. doi: 10.1002/ijc.33698

[92]

Jiang M., Qi L., Li L., et al. Caspase-8: a key protein of cross-talk signal way in “PANoptosis” in cancer // Int J Cancer. 2021. Vol. 149, N 7. P. 1408–1420. doi: 10.1002/ijc.33698

[93]

Li H, Wang X, Yu L, et al. Duck gasdermin E is a substrate of caspase-3/-7 and an executioner of pyroptosis. Front Immunol. 2023;13:1078526. doi: 10.3389/fimmu.2022.1078526

[94]

Li H., Wang X., Yu L., et al. Duck gasdermin E is a substrate of caspase-3/-7 and an executioner of pyroptosis // Front Immunol. 2023. Vol. 13. P. 1078526. doi: 10.3389/fimmu.2022.1078526

[95]

Nozaki K, Maltez VI, Rayamajhi M, et al. Caspase-7 activates ASM to repair gasdermin and perforin pores. Nature. 2022;606(7916):960–967. doi: 10.1038/s41586-022-04825-8

[96]

Nozaki K., Maltez V.I., Rayamajhi M., et al. Caspase-7 activates ASM to repair gasdermin and perforin pores // Nature. 2022. Vol. 606, N 7916. P. 960–967. doi: 10.1038/s41586-022-04825-8

[97]

McKenzie BA, Fernandes JP, Doan MAL, et al. Activation of the executioner caspases-3 and -7 promotes microglial pyroptosis in models of multiple sclerosis. J Neuroinflammation. 2020;17(1):253. doi: 10.1186/s12974-020-01902-5

[98]

McKenzie B.A., Fernandes J.P., Doan M.A.L., et al. Activation of the executioner caspases-3 and -7 promotes microglial pyroptosis in models of multiple sclerosis // J Neuroinflammation. 2020. Vol. 17, N 1. P. 253. doi: 10.1186/s12974-020-01902-5

[99]

Tsuchiya K, Nakajima S, Hosojima S, et al. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun. 2019;10(1):2091. doi: 10.1038/s41467-019-09753-2

[100]

Tsuchiya K., Nakajima S., Hosojima S., et al. Caspase-1 initiates apoptosis in the absence of gasdermin D // Nat Commun. 2019. Vol. 10, N 1. P. 2091. doi: 10.1038/s41467-019-09753-2

[101]

Bassil F, Fernagut PO, Bezard E, et al. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy. Proc Natl Acad Sci USA. 2016;113(34):9593–9598. doi: 10.1073/pnas.1609291113

[102]

Bassil F., Fernagut P.O., Bezard E., et al. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy // Proc Natl Acad Sci USA. 2016. Vol. 113, N 34. P. 9593–9598. doi: 10.1073/pnas.1609291113

[103]

Wen S, Deng F, Li L, et al. VX-765 ameliorates renal injury and fibrosis in diabetes by regulating caspase-1-mediated pyroptosis and inflammation. J Diabetes Investig. 2022;13(1):22–33. doi: 10.1111/jdi.13660

[104]

Wen S., Deng F., Li L., et al. VX-765 ameliorates renal injury and fibrosis in diabetes by regulating caspase-1-mediated pyroptosis and inflammation // J Diabetes Investig. 2022. Vol. 13, N 1. P. 22–33. doi: 10.1111/jdi.13660

[105]

Ye X, Song G, Huang S, et al. Caspase-1: a promising target for preserving blood-brain barrier integrity in acute stroke. Front Mol Neurosci. 2022;15:856372. doi: 10.3389/fnmol.2022.856372

[106]

Ye X., Song G., Huang S., et al. Caspase-1: a promising target for preserving blood-brain barrier integrity in acute stroke // Front Mol Neurosci. 2022. Vol. 15. P. 856372. doi: 10.3389/fnmol.2022.856372

[107]

Zhang C, Zhao M, Wang B, et al. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson’s disease. Redox Biol. 2021;47:102134. doi: 10.3389/fnmol.2022.856372

[108]

Zhang C., Zhao M., Wang B., et al. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson’s disease // Redox Biol. 2021. Vol. 47. P. 102134. doi: 10.1016/j.redox.2021.102134

[109]

Pérez-Bárcena J, Rodríguez Pilar J, Salazar O, et al. Serum caspase-1 as an independent prognostic factor in traumatic brain injured patients. Neurocrit Care. 2022;36(2):527–535. doi: 10.1007/s12028-021-01340-y

[110]

Pérez-Bárcena J., Rodríguez Pilar J., Salazar O., et al. Serum caspase-1 as an independent prognostic factor in traumatic brain injured patients // Neurocrit Care. 2022. Vol. 36, N 2. P. 527–535. doi: 10.1007/s12028-021-01340-y

[111]

Tovar A, Gomez A, Serrano A, et al. Role of caspase-1 as a biomarker of ocular surface damage. Am J Ophthalmol. 2022;239:74–83. doi: 10.1016/j.ajo.2022.01.020

[112]

Tovar A., Gomez A., Serrano A., et al. Role of caspase-1 as a biomarker of ocular surface damage // Am J Ophthalmol. 2022. Vol. 239. P. 74–83. doi: 10.1016/j.ajo.2022.01.020

[113]

Kopeina GS, Zhivotovsky B. Caspase-2 as a master regulator of genomic stability. Trends Cell Biol. 2021;31(9):712–720. doi: 10.1016/j.tcb.2021.03.002

[114]

Kopeina G.S., Zhivotovsky B. Caspase-2 as a master regulator of genomic stability // Trends Cell Biol. 2021. Vol. 31, N 9. P. 712–720. doi: 10.1016/j.tcb.2021.03.002

[115]

Lim Y, Dorstyn L, Kumar S. The p53-caspase-2 axis in the cell cycle and DNA damage response. Exp Mol Med. 2021;53(4):517–527. doi: 10.1038/s12276-021-00590-2

[116]

Lim Y., Dorstyn L., Kumar S. The p53-caspase-2 axis in the cell cycle and DNA damage response // Exp Mol Med. 2021. Vol. 53, N 4. P. 517-527. doi: 10.1038/s12276-021-00590-2

[117]

Vigneswara V, Ahmed Z. The role of caspase-2 in regulating cell fate. Cells. 2020;9(5):1259. doi: 10.3390/cells9051259

[118]

Vigneswara V., Ahmed Z. The role of caspase-2 in regulating cell fate // Cells. 2020. Vol. 9, N 5. P. 1259. doi: 10.3390/cells9051259

[119]

Melo FR, Wernersson S, Pejler G. Induction of mast cell apoptosis by a novel secretory granule-mediated pathway. Methods Mol Biol. 2015;1220:325–337. doi: 10.1007/978-1-4939-1568-2_20

[120]

Melo F.R., Wernersson S., Pejler G. Induction of mast cell apoptosis by a novel secretory granule-mediated pathway // Methods Mol Biol. 2015. Vol. 1220. P. 325–337. doi: 10.1007/978-1-4939-1568-2_20

[121]

Ribatti D. The staining of mast cells: a historical overview. Int Arch Allergy Immunol. 2018;176(1):55–60. doi: 10.1159/000487538

[122]

Ribatti D. The staining of mast cells: a historical overview // Int Arch Allergy Immunol. 2018. Vol. 176, N 1. P. 55–60. doi: 10.1159/000487538

[123]

Atiakshin D, Kostin A, Volodkin A, et al. Mast cells as a potential target of molecular hydrogen in regulating the local tissue microenvironment. Pharmaceuticals (Basel). 2023;16(6):817. doi: 10.3390/ph16060817

[124]

Atiakshin D., Kostin A., Volodkin A., et al. Mast cells as a potential target of molecular hydrogen in regulating the local tissue microenvironment // Pharmaceuticals (Basel). 2023. Vol. 16, N 6. P. 817. doi: 10.3390/ph16060817

[125]

Garcia-Faroldi G, Melo FR, Rönnberg E, et al. Active caspase-3 is stored within secretory compartments of viable mast cells. J Immunol. 2013;191(3):1445–1452. doi: 10.4049/jimmunol.1300216

[126]

Garcia-Faroldi G., Melo F.R., Rönnberg E., et al. Active caspase-3 is stored within secretory compartments of viable mast cells // J Immunol. 2013. Vol. 191, N 3. P. 1445–1452. doi: 10.4049/jimmunol.1300216

[127]

Wen S, Wang ZH, Zhang CX, et al. Caspase-3 promotes diabetic kidney disease through gasdermin E-mediated progression to secondary necrosis during apoptosis. Diabetes Metab Syndr Obes. 2020;13:313–323. doi: 10.2147/DMSO.S242136

[128]

Wen S., Wang Z.H., Zhang C.X., et al. Caspase-3 promotes diabetic kidney disease through gasdermin E-mediated progression to secondary necrosis during apoptosis // Diabetes Metab Syndr Obes. 2020. Vol. 13. P. 313–323. doi: 10.2147/DMSO.S242136

[129]

Bernard A, Chevrier S, Beltjens F, et al. Cleaved caspase-3 transcriptionally regulates angiogenesis-promoting chemotherapy resistance. Cancer Res. 2019;79(23):5958–5970. doi: 10.1158/0008-5472.CAN-19-0840

[130]

Bernard A., Chevrier S., Beltjens F., et al. Cleaved caspase-3 transcriptionally regulates angiogenesis-promoting chemotherapy resistance // Cancer Res. 2019. Vol. 79, N 23. P. 5958–5970. doi: 10.1158/0008-5472.CAN-19-0840

[131]

Wang X, Li Z, Bai Y, et al. A small molecule binding HMGB1 inhibits caspase-11-mediated lethality in sepsis. Cell Death Dis. 2021;12(4):402. doi: 10.1038/s41419-021-03652-5

[132]

Wang X., Li Z., Bai Y., et al. A small molecule binding HMGB1 inhibits caspase-11-mediated lethality in sepsis // Cell Death Dis. 2021. Vol. 12, N 4. P. 402. doi: 10.1038/s41419-021-03652-5

[133]

Eren E, Planès R, Bagayoko S, et al. Irgm2 and Gate-16 cooperatively dampen Gram-negative bacteria-induced caspase-11 response. EMBO Rep. 2020;21(11):e50829. doi: 10.15252/embr.202050829

[134]

Eren E., Planès R., Bagayoko S., et al. Irgm2 and Gate-16 cooperatively dampen Gram-negative bacteria-induced caspase-11 response // EMBO Rep. 2020. Vol. 21, N 11. P. e50829. doi: 10.15252/embr.202050829

[135]

Yang H, Liu H, Zeng Q, et al. Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Mol Med. 2019;25(1):13. doi: 10.1186/s10020-019-0081-6

[136]

Yang H., Liu H., Zeng Q., et al. Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation // Mol Med. 2019. Vol. 25, N 1. P. 13. doi: 10.1186/s10020-019-0081-6

[137]

Pereira LMN, Assis PA, de Araújo NM, et al. Caspase-8 mediates inflammation and disease in rodent malaria. Nat Commun. 2020;11(1):4596. Corrected and republished from: Nat Commun. 2020;11(1):5673. doi: 10.1038/s41467-020-18295-x

[138]

Pereira L.M.N., Assis P.A., de Araújo N.M., et al. Caspase-8 mediates inflammation and disease in rodent malaria // Nat Commun. 2020. Vol. 11, N 1. P. 4596. Corrected and republished from: Nat Commun. 2020. Vol. 11, N 1. P. 5673. doi: 10.1038/s41467-020-18295-x

[139]

Teh CE, Preston SP, Robbins AK, et al. Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage. Sci Immunol. 2022;7(69):eabn8041. doi: 10.1126/sciimmunol.abn8041

[140]

Teh C.E., Preston S.P., Robbins A.K., et al. Caspase-8 has dual roles in regulatory T cell homeostasis balancing immunity to infection and collateral inflammatory damage // Sci Immunol. 2022. Vol. 7, N 69. P. eabn8041. doi: 10.1126/sciimmunol.abn8041

[141]

Linder A, Hornung V. Inflammasomes in T cells. J Mol Biol. 2022;434(4):167275. doi: 10.1016/j.jmb.2021.167275

[142]

Linder A., Hornung V. Inflammasomes in T cells // J Mol Biol. 2022. Vol. 434, N 4. P. 167275. doi: 10.1016/j.jmb.2021.167275

[143]

Magro CM, Mulvey J, Kubiak J, et al. Severe COVID-19: a multifaceted viral vasculopathy syndrome. Ann Diagn Pathol. 2021;50:151645. doi: 10.1016/j.anndiagpath.2020.151645

[144]

Magro C.M., Mulvey J., Kubiak J., et al. Severe COVID-19: a multifaceted viral vasculopathy syndrome // Ann Diagn Pathol. 2021. Vol. 50. P. 151645. doi: 10.1016/j.anndiagpath.2020.151645

[145]

Karabulut Uzuncakmak S, Dirican E, Naldan ME, et al. Investigation of CYP2E1 and caspase-3 gene expressions in COVID-19 patients. Gene Rep. 2022;26:101497. doi: 10.1016/j.genrep.2022.101497

[146]

Karabulut Uzuncakmak S., Dirican E., Naldan M.E., et al. Investigation of CYP2E1 and caspase-3 gene expressions in COVID-19 patients // Gene Rep. 2022. Vol. 26. P. 101497. doi: 10.1016/j.genrep.2022.101497

[147]

Yildiz Gulhan P, Eroz R, Ataoglu O, et al. The evaluation of both the expression and serum protein levels of caspase-3 gene in patients with different degrees of SARS-CoV2 infection. J Med Virol. 2022;94(3):897–905. doi: 10.1002/jmv.27362

[148]

Yildiz Gulhan P., Eroz R., Ataoglu O., et al. The evaluation of both the expression and serum protein levels of caspase-3 gene in patients with different degrees of SARS-CoV2 infection // J Med Virol. 2022. Vol. 94, N 3. P. 897–905. doi: 10.1002/jmv.27362

[149]

Gonzalez-Juarbe N, Bradley KM, Riegler AN, et al. Bacterial pore-forming toxins promote the activation of caspases in parallel to necroptosis to enhance alarmin release and inflammation during pneumonia. Sci Rep. 2018;8(1):5846. doi: 10.1038/s41598-018-24210-8

[150]

Gonzalez-Juarbe N., Bradley K.M., Riegler A.N., et al. Bacterial pore-forming toxins promote the activation of caspases in parallel to necroptosis to enhance alarmin release and inflammation during pneumonia // Sci Rep. 2018. Vol. 8, N 1. P. 5846. doi: 10.1038/s41598-018-24210-8

[151]

Ju J. An increased proportion of apoptosis in CD4⁺ T lymphocytes isolated from the peripheral blood in patients with stable chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul). 2018;81(2):132–137. Corrected and republished from: Tuberc Respir Dis (Seoul). 2018;81(4):351. doi: 10.4046/trd.2017.0079

[152]

Ju J. An increased proportion of apoptosis in CD4⁺ T lymphocytes isolated from the peripheral blood in patients with stable chronic obstructive pulmonary disease // Tuberc Respir Dis (Seoul). 2018. Vol. 81, N 2. P. 132–137. Corrected and republished from: Tuberc Respir Dis (Seoul). 2018. Vol. 81, N 4. P. 351. doi: 10.4046/trd.2017.0079

[153]

Soodaeva S, Kubysheva N, Klimanov I, et al. The differences in the levels of oxidative status marker and soluble CD95 in patients with moderate to severe COPD during an exacerbation and a stable period. Oxid Med Cell Longev. 2021;2021:2105406. doi: 10.1155/2021/2105406

[154]

Soodaeva S., Kubysheva N., Klimanov I., et al. The differences in the levels of oxidative status marker and soluble CD95 in patients with moderate to severe COPD during an exacerbation and a stable period // Oxid Med Cell Longev. 2021. Vol. 2021. P. 2105406. doi: 10.1155/2021/2105406

[155]

Song Q, Chen P, Liu XM. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD. Respir Res. 2021;22(1):39. doi: 10.1186/s12931-021-01630-1

[156]

Song Q., Chen P., Liu X.M. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD // Respir Res. 2021. Vol. 22, N 1. P. 39. doi: 10.1186/s12931-021-01630-1

[157]

Feng Y, Li M, Yangzhong X, et al. Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem. 2022;78(4):721–737. doi: 10.1007/s13105-022-00909-1

[158]

Feng Y., Li M., Yangzhong X., et al. Pyroptosis in inflammation-related respiratory disease // J Physiol Biochem. 2022. Vol. 78, N 4. P. 721–737. doi: 10.1007/s13105-022-00909-1

[159]

Baran R, Wehland M, Schulz H, et al. Microgravity-related changes in bone density and treatment options: a systematic review. Int J Mol Sci. 2022;23(15):8650. doi: 10.3390/ijms23158650

[160]

Baran R., Wehland M., Schulz H., et al. Microgravity-related changes in bone density and treatment options: a systematic review // Int J Mol Sci. 2022. Vol. 23, N 15. P. 8650. doi: 10.3390/ijms23158650

[161]

Vroom MM, Troncoso-Garcia A, Duscher AA, Foster JS. Modeled microgravity alters apoptotic gene expression and caspase activity in the squid-vibrio symbiosis. BMC Microbiol. 2022;22(1):202. doi: 10.1186/s12866-022-02614-x

[162]

Vroom M.M., Troncoso-Garcia A., Duscher A.A., Foster J.S. Modeled microgravity alters apoptotic gene expression and caspase activity in the squid-vibrio symbiosis // BMC Microbiol. 2022. Vol. 22, N 1. P. 202. doi: 10.1186/s12866-022-02614-x

[163]

Novoselova EG, Lunin SM, Khrenov MO, et al. Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space. Immunobiology. 2015;220(4):500–509. doi: 10.1016/j.imbio.2014.10.021

[164]

Novoselova E.G., Lunin S.M., Khrenov M.O., et al. Changes in immune cell signalling, apoptosis and stress response functions in mice returned from the BION-M1 mission in space // Immunobiology. 2015. Vol. 220, N 4. P. 500–509. doi: 10.1016/j.imbio.2014.10.021

[165]

Dang B, Yang Y, Zhang E. et al. Simulated microgravity increases heavy ion radiation-induced apoptosis in human B lymphoblasts. Life Sci. 2014;97(2):123–128. doi: 10.1016/j.lfs.2013.12.008

[166]

Dang B., Yang Y., Zhang E., et al. Simulated microgravity increases heavy ion radiation-induced apoptosis in human B lymphoblasts // Life Sci. 2014. Vol. 97, N 2. P. 123–128. doi: 10.1016/j.lfs.2013.12.008

[167]

Porseva VV, Shilkin VV, Strelkov AA. et al. Changes in the neurochemical composition of motor neurons of the spinal cord in mice under conditions of space flight. Bull Exp Biol Med. 2017;162(3):336–339. doi: 10.1007/s10517-017-3609-1

[168]

Porseva V.V., Shilkin V.V., Strelkov A.A., et al. Changes in the neurochemical composition of motor neurons of the spinal cord in mice under conditions of space flight // Bull Exp Biol Med. 2017. Vol. 162, N 3. P. 336–339. doi: 10.1007/s10517-017-3609-1

[169]

Prasad B, Grimm D, Strauch SM, et al. Influence of microgravity on apoptosis in cells, tissues, and other systems in vivo and in vitro. Int J Mol Sci. 2020;21(24):9373. doi: 10.3390/ijms21249373

[170]

Prasad B., Grimm D., Strauch S.M., et al. Influence of microgravity on apoptosis in cells, tissues, and other systems in vivo and in vitro // Int J Mol Sci. 2020. Vol. 21, N 24. P. 9373. doi: 10.3390/ijms21249373

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/