Mechanisms of triggering antitumor immunity: from photodynamic effects to immunogenic cell death
Ekaterina E. Sleptsova , Tikhon S. Redkin , Mariia O. Saviuk , Victoria D. Turubanova
Genes & Cells ›› 2024, Vol. 19 ›› Issue (1) : 127 -151.
Mechanisms of triggering antitumor immunity: from photodynamic effects to immunogenic cell death
The development of cancer immunotherapies provides hope to millions of patients for better clinical outcomes after tumor treatment. Thus, investigating the fundamental mechanisms of antitumor immunity activation is an urgent task. Numerous studies have outlined the effect of immunogenic cell death (ICD) on cancer cells, and this outcome is both sophisticated and simple. Different stimuli can cause ICD; however, photodynamic exposure has been proven to be an effective inducer of programed death on par with radiotherapy. The link between triggering a photodynamic response in cancer cells and triggering ICD has been poorly described in experimental works. The question of which molecular cascades are activated after photodynamic therapy (PDT) irradiation and the way damage-associated molecular patterns (DAMPs) are released is intriguing. Much is known about reactive oxygen species generation and endoplasmic reticulum stress but little about the Golgi apparatus. Photosensitizers of different types can exert different effects, including completely nonimmunogenic ones.
This review describes the cascades that link the induction of cell death by photodynamic exposure and the immunogenic pattern of DAMP release. The photosensitizers that have shown potential as ICD inducers and the different pathways of programed death that occur during PDT exposure are also discussed.
immunogenic cell death / photodynamic exposure / DAMPs / ER-stress / ROS / Golgi apparatus
| [1] |
Boulikas T, Vougiouka M. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (review). Oncol Rep. 2004;11(3):559–595. |
| [2] |
Boulikas T., Vougiouka M. Recent clinical trials using cisplatin, carboplatin and their combination chemotherapy drugs (Review) // Oncol Rep. 2004. Vol. 11, N 3. P. 559–595. |
| [3] |
Annovazzi L, Mellai M, Schiffer D. Chemotherapeutic drugs: DNA damage and repair in glioblastoma. Cancers (Basel). 2017;9(6):57. doi: 10.3390/cancers9060057 |
| [4] |
Annovazzi L., Mellai M., Schiffer D. Chemotherapeutic drugs: DNA damage and repair in glioblastoma // Cancers (Basel). 2017. Vol. 9, N 6. P. 57. doi: 10.3390/cancers9060057 |
| [5] |
Silasi DA, Alvero AB, Rutherford TJ, et al. Phenoxodiol: pharmacology and clinical experience in cancer monotherapy and in combination with chemotherapeutic drugs. Expert Opin Pharmacother. 2009;10(6):1059–1067. Corrected and republished from: Expert Opin Pharmacother. 2009;10(8):1387. doi: 10.1517/14656560902837980 |
| [6] |
Silasi D.A., Alvero A.B., Rutherford T.J., et al. Phenoxodiol: pharmacology and clinical experience in cancer monotherapy and in combination with chemotherapeutic drugs // Expert Opin Pharmacother. 2009. Vol. 10, N 6. P. 1059–1067. Corrected and republished from: Expert Opin Pharmacother. 2009. Vol. 10, N 8. P. 1387. doi: 10.1517/14656560902837980 |
| [7] |
Peng M, Darko KO, Tao T, et al. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms. Cancer Treat Rev. 2017;54:24–33. doi: 10.1016/j.ctrv.2017.01.005 |
| [8] |
Peng M., Darko K.O., Tao T., et al. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms // Cancer Treat Rev. 2017. Vol. 54. P. 24–33. doi: 10.1016/j.ctrv.2017.01.005 |
| [9] |
Romiti A, Cox MC, Sarcina I, et al. Metronomic chemotherapy for cancer treatment: a decade of clinical studies. Cancer Chemother Pharmacol. 2013;72(1):13–33. doi: 10.1007/s00280-013-2125-x |
| [10] |
Romiti A., Cox M.C., Sarcina I., et al. Metronomic chemotherapy for cancer treatment: a decade of clinical studies // Cancer Chemother Pharmacol. 2013. Vol. 72, N 1. P. 13–33. doi: 10.1007/s00280-013-2125-x |
| [11] |
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. doi: 10.1158/2159-8290.CD-21-1059 |
| [12] |
Hanahan D. Hallmarks of cancer: new dimensions // Cancer Discov. 2022. Vol. 12, N 1. P. 31–46. doi: 10.1158/2159-8290.CD-21-1059 |
| [13] |
Mahoney DJ, Stojdl DF. Molecular pathways: multimodal cancer-killing mechanisms employed by oncolytic vesiculoviruses. Clin Cancer Res. 2013;19(4):758–763. doi: 10.1158/1078-0432.CCR-11-3149 |
| [14] |
Mahoney D.J., Stojdl D.F. Molecular pathways: multimodal cancer-killing mechanisms employed by oncolytic vesiculoviruses // Clin Cancer Res. 2013. Vol. 19, N 4. P. 758–763. doi: 10.1158/1078-0432.CCR-11-3149 |
| [15] |
Ning Y, Shen K, Wu Q, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol Lett. 2018;199:36–43. doi: 10.1016/j.imlet.2018.05.002 |
| [16] |
Ning Y., Shen K., Wu Q., et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response // Immunol Lett. 2018. Vol. 199. P. 36–43. doi: 10.1016/j.imlet.2018.05.002 |
| [17] |
Galluzzi L, Kepp O, Hett E, et al. Immunogenic cell death in cancer: concept and therapeutic implications. J Transl Med. 2023;21(1):162. doi: 10.1186/s12967-023-04017-6 |
| [18] |
Galluzzi L., Kepp O., Hett E., et al. Immunogenic cell death in cancer: concept and therapeutic implications // J Transl Med. 2023. Vol. 21, N 1. P. 162. doi: 10.1186/s12967-023-04017-6 |
| [19] |
Placek K, Schultze JL, Aschenbrenner AC. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J Clin Invest. 2019;129(8):2994–3005. doi: 10.1172/JCI124619 |
| [20] |
Placek K., Schultze J.L., Aschenbrenner A.C. Epigenetic reprogramming of immune cells in injury, repair, and resolution // J Clin Invest. 2019. Vol. 129, N 8. P. 2994–3005. doi: 10.1172/JCI124619 |
| [21] |
Guo Y, Xie YQ, Gao M, et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat Immunol. 2021;22(6):746–756. doi: 10.1038/s41590-021-00940-2 |
| [22] |
Guo Y., Xie Y.Q., Gao M., et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity // Nat Immunol. 2021. Vol. 22, N 6. P. 746–756. doi: 10.1038/s41590-021-00940-2 |
| [23] |
Casares N, Pequignot MO, Tesniere A, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202(12):1691–1701. doi: 10.1084/jem.20050915 |
| [24] |
Casares N., Pequignot M.O., Tesniere A., et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death // J Exp Med. 2005. Vol. 202, N 12. P. 1691–1701. doi: 10.1084/jem.20050915 |
| [25] |
Krysko DV, Garg AD, Kaczmarek A, et al. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–875. doi: 10.1038/nrc3380 |
| [26] |
Krysko D.V., Garg A.D., Kaczmarek A., et al. Immunogenic cell death and DAMPs in cancer therapy // Nat Rev Cancer. 2012. Vol. 12, N 12. P. 860–875. doi: 10.1038/nrc3380 |
| [27] |
Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015;25(1):11–17. doi: 10.1016/j.semradonc.2014.07.005 |
| [28] |
Golden E.B., Apetoh L. Radiotherapy and immunogenic cell death // Semin Radiat Oncol. 2015. Vol. 25, N 1. P. 11–17. doi: 10.1016/j.semradonc.2014.07.005 |
| [29] |
Fucikova J, Kepp O, Kasikova L, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11(11):1013. doi: 10.1038/s41419-020-03221-2 |
| [30] |
Fucikova J., Kepp O., Kasikova L., et al. Detection of immunogenic cell death and its relevance for cancer therapy // Cell Death Dis. 2020. Vol. 11, N 11. P. 1013. doi: 10.1038/s41419-020-03221-2 |
| [31] |
Garg AD, Dudek-Peric AM, Romano E, Agostinis P. Immunogenic cell death. Int J Dev Biol. 2015;59(1-3):131–140. doi: 10.1387/ijdb.150061pa |
| [32] |
Garg A.D., Dudek-Peric A.M., Romano E., Agostinis P. Immunogenic cell death // Int J Dev Biol. 2015. Vol. 59(1-3). P. 131–140. doi: 10.1387/ijdb.150061pa |
| [33] |
Galluzzi L, Vitale I, Warren S, et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020;8(1):e000337. Corrected and republished from: J Immunother Cancer. 2020;8(1). doi: 10.1136/jitc-2019-000337 |
| [34] |
Galluzzi L., Vitale I., Warren S., et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death // J Immunother Cancer. 2020. Vol. 8, N 1. P. e000337. Corrected and republished from: J Immunother Cancer. 2020. Vol. 8, N 1. doi: 10.1136/jitc-2019-000337 |
| [35] |
Inoue H, Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ. 2014;21(1):39–49. doi: 10.1038/cdd.2013.84 |
| [36] |
Inoue H., Tani K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments // Cell Death Differ. 2014. Vol. 21, N 1. P. 39–49. doi: 10.1038/cdd.2013.84 |
| [37] |
Sen S, Won M, Levine MS, et al. Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem Soc Rev. 2022;51(4):1212–1233. doi: 10.1039/d1cs00417d |
| [38] |
Sen S., Won M., Levine M.S., et al. Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future // Chem Soc Rev. 2022. Vol. 51, N 4. P. 1212–1233. doi: 10.1039/d1cs00417d |
| [39] |
Mardi A, Shirokova AV, Mohammed RN, et al. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; combination of oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int. 2022;22(1):168. doi: 10.1186/s12935-022-02585-z |
| [40] |
Mardi A., Shirokova A.V., Mohammed R.N., et al. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; combination of oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction // Cancer Cell Int. 2022. Vol. 22, N 1. P. 168. doi: 10.1186/s12935-022-02585-z |
| [41] |
Zhang Z, Yue Y, Li Q, et al. Design of calixarene-based ICD inducer for efficient cancer immunotherapy. Adv Funct Mater. 2023;33(16). doi: 10.1002/adfm.202213967 |
| [42] |
Zhang Z., Yue Y., Li Q., et al. Design of calixarene-based ICD inducer for efficient cancer immunotherapy // Adv Funct Mater. 2023. Vol. 33, N 16. doi: 10.1002/adfm.202213967 |
| [43] |
Zhang Y, Sultonova RD, You SH, et al. The anticancer effect of PASylated calreticulin-targeting L-ASNase in solid tumor bearing mice with immunogenic cell death-inducing chemotherapy. Biochem Pharmacol. 2023;210:115473. doi: 10.1016/j.bcp.2023.115473 |
| [44] |
Zhang Y., Sultonova R.D., You S.H., et al. The anticancer effect of PASylated calreticulin-targeting L-ASNase in solid tumor bearing mice with immunogenic cell death-inducing chemotherapy // Biochem Pharmacol. 2023. Vol. 210. P. 115473. doi: 10.1016/j.bcp.2023.115473 |
| [45] |
Zhang M, Jin X, Gao M, et al. A self-reporting fluorescent salicylaldehyde–chlorambucil conjugate as a type-II ICD inducer for cancer vaccines. Adv Mater. 2022;34(36):e2205701. doi: 10.1002/adma.202205701 |
| [46] |
Zhang M., Jin X., Gao M., et al. A self-reporting fluorescent salicylaldehyde-chlorambucil conjugate as a Type-II ICD inducer for cancer vaccines // Adv Mater. 2022. Vol. 34, N 36. P. e2205701. doi: 10.1002/adma.202205701 |
| [47] |
Song N, Park M, Kim N, et al. Tumor-targeting oxidative stress nanoamplifiers as anticancer nanomedicine with immunostimulating activity. Biomater Sci. 2022;10(21):6160–6171. doi: 10.1039/d2bm00601d |
| [48] |
Song N., Park M., Kim N., et al. Tumor-targeting oxidative stress nanoamplifiers as anticancer nanomedicine with immunostimulating activity // Biomater Sci. 2022. Vol. 10, N 21. P. 6160–6171. doi: 10.1039/d2bm00601d |
| [49] |
Song H, Cai Z, Li J, et al. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy. J Nanobiotechnology. 2022;20(1):329. doi: 10.1186/s12951-022-01531-5 |
| [50] |
Song H., Cai Z., Li J., et al. Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy // J Nanobiotechnology. 2022. Vol. 20, N 1. P. 329. doi: 10.1186/s12951-022-01531-5 |
| [51] |
Wang W, Yang X, Li C, et al. Immunogenic cell death (ICD) of murine H22 cells induced by lentinan. Nutr Cancer. 2022;74(2):640–649. doi: 10.1080/01635581.2021.1897632 |
| [52] |
Wang W., Yang X., Li C., et al. Immunogenic Cell Death (ICD) of murine H22 cells induced by lentinan // Nutr Cancer. 2022. Vol. 74, N 2. P. 640–649. doi: 10.1080/01635581.2021.1897632 |
| [53] |
Lv S, Sylvestre M, Song K, Pun SH. Development of D-melittin polymeric nanoparticles for anti-cancer treatment. Biomaterials. 2021;277:121076. doi: 10.1016/j.biomaterials.2021.121076 |
| [54] |
Lv S., Sylvestre M., Song K., Pun S.H. Development of D-melittin polymeric nanoparticles for anti-cancer treatment // Biomaterials. 2021. Vol. 277. P. 121076. doi: 10.1016/j.biomaterials.2021.121076 |
| [55] |
Olek M, Machorowska-Pieniążek A, Czuba ZP, et al. Effect of hypericin-mediated photodynamic therapy on the secretion of soluble TNF receptors by oral cancer cells. Pharmaceutics. 2023;15(4):1279. doi: 10.3390/pharmaceutics15041279 |
| [56] |
Olek M., Machorowska-Pieniążek A., Czuba Z.P., et al. Effect of hypericin-mediated photodynamic therapy on the secretion of soluble TNF receptors by oral cancer cells // Pharmaceutics. 2023. Vol. 15, N 4. P. 1279. doi: 10.3390/pharmaceutics15041279 |
| [57] |
Kumar Das D. Synthetic hypericin photodynamic therapy for cutaneous T-Cell lymphoma. Oncology Times. 2022;44(20):1, 7. doi: 10.1097/01.COT.0000892568.02297.9b |
| [58] |
Kumar Das D. Synthetic hypericin photodynamic therapy for cutaneous T-Cell lymphoma // Oncology Times. 2022. Vol. 44, N 20. P. 1, 7. doi: 10.1097/01.COT.0000892568.02297.9b |
| [59] |
Dong X, Zeng Y, Zhang Z, et al. Hypericin-mediated photodynamic therapy for the treatment of cancer: a review. J Pharm Pharmacol. 2021;73(4):425–436. doi: 10.1093/jpp/rgaa018 |
| [60] |
Dong X., Zeng Y., Zhang Z., et al. Hypericin-mediated photodynamic therapy for the treatment of cancer: a review // J Pharm Pharmacol. 2021. Vol. 73, N 4. P. 425–436. doi: 10.1093/jpp/rgaa018 |
| [61] |
Kataoka H, Nishie H, Tanaka M, et al. Potential of photodynamic therapy based on sugar-conjugated photosensitizers. J Clin Med. 2021;10(4):841. doi: 10.3390/jcm10040841 |
| [62] |
Kataoka H., Nishie H., Tanaka M., et al. Potential of photodynamic therapy based on sugar-conjugated photosensitizers // J Clin Med. 2021. Vol. 10, N 4. P. 841. doi: 10.3390/jcm10040841 |
| [63] |
Lu Y, Sun W, Du J, et al. Immuno-photodynamic therapy (IPDT): organic photosensitizers and their application in cancer ablation. JACS Au. 2023;3(3):682–699. doi: 10.1021/jacsau.2c00591 |
| [64] |
Lu Y., Sun W., Du J., et al. Immuno-photodynamic therapy (IPDT): Organic photosensitizers and their application in cancer ablation // JACS Au. 2023. Vol. 3, N 3. P. 682–699. doi: 10.1021/jacsau.2c00591 |
| [65] |
Lin X, Mao D, Bai R. Comparison of three commercial photosensitizers for efficiency of inducing immunogenic cell death in anti-tumor immunotherapy. Nan Fang Yi Ke Da Xue Xue Bao. 2022;42(12):1791–1798. (In Chinese). doi: 10.12122/j.issn.1673-4254.2022.12.06 |
| [66] |
Lin X., Mao D., Bai R. Comparison of three commercial photosensitizers for efficiency of inducing immunogenic cell death in anti-tumor immunotherapy // Nan Fang Yi Ke Da Xue Xue Bao. 2022. Vol. 42, N 12. P. 1791–1798. doi: 10.12122/j.issn.1673-4254.2022.12.06 |
| [67] |
Turubanova VD, Balalaeva IV, Mishchenko TA, et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J Immunother Cancer. 2019;7(1). doi: 10.1186/s40425-019-0826-3 |
| [68] |
Turubanova V.D., Balalaeva I.V., Mishchenko T.A., et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine // J Immunother Cancer. 2019. Vol. 7, N 1. P. 350. doi: 10.1186/s40425-019-0826-3 |
| [69] |
Morais JAV, Almeida LR, Rodrigues MC, et al. The induction of immunogenic cell death by photodynamic therapy in B16F10 cells in vitro is effected by the concentration of the photosensitizer. Photodiagnosis Photodyn Ther. 2021;35:102392. doi: 10.1016/j.pdpdt.2021.102392 |
| [70] |
Morais J.A.V. Almeida L.R., Rodrigues M.C., et al. The induction of immunogenic cell death by photodynamic therapy in B16F10 cells in vitro is effected by the concentration of the photosensitizer // Photodiagnosis Photodyn Ther. 2021. Vol. 35. P. 102392. doi: 10.1016/j.pdpdt.2021.102392 |
| [71] |
Alzeibak R, Mishchenko TA, Shilyagina NY, et al. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer. 2021;9(1):e001926. Corrected and republished from: J Immunother Cancer. 2021;9(10). doi: 10.1136/jitc-2020-001926 |
| [72] |
Alzeibak R., Mishchenko T.A., Shilyagina N.Y., et al. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future // J Immunother Cancer. 2021. Vol. 9, N 1. P. e001926. Corrected and republished from: J Immunother Cancer. 2021 Oct. Vol. 9, N 10. doi: 10.1136/jitc-2020-001926 |
| [73] |
Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012;31(5):1062–1079. doi: 10.1038/emboj.2011.497 |
| [74] |
Garg A.D., Krysko D.V., Verfaillie T., et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death // EMBO J. 2012. Vol. 31, N 5. P. 1062–1079. doi: 10.1038/emboj.2011.497 |
| [75] |
Vedunova M, Turubanova V, Vershinina O, et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis. 2022;13(12):1062. doi: 10.1038/s41419-022-05514-0 |
| [76] |
Vedunova M., Turubanova V., Vershinina O., et al. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis // Cell Death Dis. 2022. Vol. 13, N 12. P. 1062. doi: 10.1038/s41419-022-05514-0 |
| [77] |
Allison RR, Downie GH, Cuenca R, et al. Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther. 2004;1(1):27–42. doi: 10.1016/S1572-1000(04)00007-9 |
| [78] |
Allison R.R., Downie G.H., Cuenca R., et al. Photosensitizers in clinical PDT // Photodiagnosis Photodyn Ther. 2004. Vol. 1, N 1. P. 27–42. doi: 10.1016/S1572-1000(04)00007-9 |
| [79] |
Escudero A, Carrillo-Carrión C, Castillejos MC, et al. Photodynamic therapy: photosensitizers and nanostructures. Mater Chem Front. 2021;5(10):3788–3812. doi: 10.1039/D0QM00922A |
| [80] |
Escudero A., Carrillo-Carrión C., Castillejos MC., et al. Photodynamic therapy: photosensitizers and nanostructures // Mater Chem Front. 2021. Vol. 5, N 10. P. 3788–3812. doi: 10.1039/D0QM00922A |
| [81] |
Spikes JD. New trends in photobiology. J Photochem Photobiol B. 1990;6(3):259–274. doi: 10.1016/1011-1344(90)85096-f |
| [82] |
Spikes J.D. New trends in photobiology // J Photochem Photobiol B. 1990. Vol. 6, N 3. P. 259–274. doi: 10.1016/1011-1344(90)85096-f |
| [83] |
Dabrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem Photobiol Sci. 2015;14(10):1765–1780. doi: 10.1039/c5pp00132c |
| [84] |
Dabrowski J.M., Arnaut L.G. Photodynamic therapy (PDT) of cancer: from local to systemic treatment // Photochem Photobiol Sci. 2015. Vol. 14, N 10. P. 1765–1780. doi: 10.1039/c5pp00132c |
| [85] |
Park J, Lee YK, Park IK, Hwang SR. Current limitations and recent progress in nanomedicine for clinically available photodynamic therapy. Biomedicines. 2021;9(1):85. doi: 10.3390/biomedicines9010085 |
| [86] |
Park J., Lee Y.K., Park I.K., Hwang S.R. Current limitations and recent progress in nanomedicine for clinically available photodynamic therapy // Biomedicines. 2021. Vol. 9, N 1. P. 85. doi: 10.3390/biomedicines9010085 |
| [87] |
Josefsen LB, Boyle RW. Photodynamic therapy: novel third-generation photosensitizers one step closer? Br J Pharmacol. 2008;154(1):1–3. doi: 10.1038/bjp.2008.98 |
| [88] |
Josefsen L.B., Boyle R.W. Photodynamic therapy: novel third-generation photosensitizers one step closer? // Br J Pharmacol. 2008. Vol. 154, N 1. P. 1–3. doi: 10.1038/bjp.2008.98 |
| [89] |
Wall MH Jr, Basu P, Buranda T, et al. Photoinduced electron transfer in covalently linked oxomolybdenum (V) porphyrin systems. Inorg Chem. 1997;36(25):5676–5677. doi: 10.1021/ic9705711 |
| [90] |
Wall M.H. Jr, Basu P., Buranda T., et al. Photoinduced electron transfer in covalently linked oxomolybdenum(V) porphyrin systems // Inorg Chem. 1997. Vol. 36, N 25. P. 5676–5677. doi: 10.1021/ic9705711 |
| [91] |
Shakhova M, Loginova D, Meller A, et al. Photodynamic therapy with chlorin-based photosensitizer at 405 nm: numerical, morphological, and clinical study. J Biomed Opt. 2018;23(9):1–9. doi: 10.1117/1.JBO.23.9.091412 |
| [92] |
Shakhova M., Loginova D., Meller A., et al. Photodynamic therapy with chlorin-based photosensitizer at 405 nm: numerical, morphological, and clinical study // J Biomed Opt. 2018. Vol. 23, N 9. P. 1–9. doi: 10.1117/1.JBO.23.9.091412 |
| [93] |
Hak A, Ali MS, Sankaranarayanan SA, et al. Chlorin e6: a promising photosensitizer in photo-based cancer nanomedicine. ACS Appl Bio Mater. 2023;6(2):349–364. doi: 10.1021/acsabm.2c00891 |
| [94] |
Hak A., Ali M.S., Sankaranarayanan S.A., et al. Chlorin e6: a promising photosensitizer in photo-based cancer nanomedicine // ACS Appl Bio Mater. 2023. Vol. 6, N 2. P. 349–364. doi: 10.1021/acsabm.2c00891 |
| [95] |
Li X, Zheng BD, Peng XH, et al. Phthalocyanines as medicinal photosensitizers: developments in the last five years. Coord Chem Rev. 2019;379:147–160. doi: 10.1016/j.ccr.2017.08.003 |
| [96] |
Li X., Zheng B.D., Peng X.H., et al. Phthalocyanines as medicinal photosensitizers: developments in the last five years // Coord Chem Rev. 2019. Vol. 379. P. 147–160. doi: 10.1016/j.ccr.2017.08.003 |
| [97] |
Roguin LP, Chiarante N, García Vior MC, Marino J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol. 2019;114:105575. doi: 10.1016/j.biocel.2019.105575 |
| [98] |
Roguin L.P., Chiarante N., García Vior M.C., Marino J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy // Int J Biochem Cell Biol. 2019. Vol. 114. P. 105575. doi: 10.1016/j.biocel.2019.105575 |
| [99] |
Zhou L, Zou M, Xu Y, et al. Nano drug delivery system for tumor immunotherapy: next-generation therapeutics. Front Oncol. 2022;12:864301. doi: 10.3389/fonc.2022.864301 |
| [100] |
Zhou L., Zou M., Xu Y., et al. Nano drug delivery system for tumor immunotherapy: next-generation therapeutics // Front Oncol. 2022. Vol. 12. P. 864301. doi: 10.3389/fonc.2022.864301 |
| [101] |
Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22(1):25. doi: 10.1186/s40824-018-0140-z |
| [102] |
Baskaran R., Lee J., Yang S.G. Clinical development of photodynamic agents and therapeutic applications // Biomater Res. 2018. Vol. 22. P. 25. doi: 10.1186/s40824-018-0140-z |
| [103] |
Foley P. Clinical efficacy of methyl aminolevulinate (Metvix®) photodynamic therapy. J Dermatolog Treat. 2003;14 Suppl. 3:15–22. doi: 10.1080/jdt.14.s3.15.22 |
| [104] |
Foley P. Clinical efficacy of methyl aminolevulinate (Metvix®) photodynamic therapy // J Dermatolog Treat. 2003. Vol. 14 Suppl. 3. P. 15–22. doi: 10.1080/jdt.14.s3.15.22 |
| [105] |
Yoon I, Li JZ, Shim YK. Advance in photosensitizers and light delivery for photodynamic therapy. Clin Endosc. 2013;46(1):7–23. doi: 10.5946/ce.2013.46.1.7 |
| [106] |
Yoon I., Li J.Z., Shim Y.K. Advance in photosensitizers and light delivery for photodynamic therapy // Clin Endosc. 2013. Vol. 46, N 1. P. 7–23. doi: 10.5946/ce.2013.46.1.7 |
| [107] |
O’Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009;85(5):1053–1074. doi: 10.1111/j.1751-1097.2009.00585.x |
| [108] |
O’Connor A.E., Gallagher W.M., Byrne A.T. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy // Photochem Photobiol. 2009. Vol. 85, N 5. P. 1053–1074. doi: 10.1111/j.1751-1097.2009.00585.x |
| [109] |
Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: review. Photodiagnosis Photodyn Ther. 2021;34:102091. doi: 10.1016/j.pdpdt.2020.102091 |
| [110] |
Mfouo-Tynga I.S., Dias L.D., Inada N.M., Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: review // Photodiagnosis Photodyn Ther. 2021. Vol. 34. P. 102091. doi: 10.1016/j.pdpdt.2020.102091 |
| [111] |
Lim S, Park J, Shim MK, et al. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics. 2019;9(25):7906–7923. doi: 10.7150/thno.38425 |
| [112] |
Lim S., Park J., Shim M.K., et al. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy // Theranostics. 2019. Vol. 9, N 25. P. 7906–7923. doi: 10.7150/thno.38425 |
| [113] |
Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8 |
| [114] |
Mitchell M.J., Billingsley M.M., Haley R.M., et al. Engineering precision nanoparticles for drug delivery // Nat Rev Drug Discov. 2021. Vol. 20, N 2. P. 101–124. doi: 10.1038/s41573-020-0090-8 |
| [115] |
Wu P, Han J, Gong Y, et al. Nanoparticle-based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: current advances and applications. Pharmaceutics. 2022;14(10):1990. doi: 10.3390/pharmaceutics14101990 |
| [116] |
Wu P., Han J., Gong Y., et al. Nanoparticle-based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: current advances and applications // Pharmaceutics. 2022. Vol. 14, N 10. P. 1990. doi: 10.3390/pharmaceutics14101990 |
| [117] |
Yi Y, Yu M, Li W, et al. Vaccine-like nanomedicine for cancer immunotherapy. J Control Release. 2023;355:760–778. doi: 10.1016/j.jconrel.2023.02.015 |
| [118] |
Yi Y., Yu M., Li W., et al. Vaccine-like nanomedicine for cancer immunotherapy // J Control Release. 2023. Vol. 355. P. 760–778. doi: 10.1016/j.jconrel.2023.02.015 |
| [119] |
Costa RA, Farah ME, Freymüller E, et al. Choriocapillaris photodynamic therapy using indocyanine green. Am J Ophthalmol. 2001;132(4):557–565. doi: 10.1016/s0002-9394(01)01138-2 |
| [120] |
Costa R.A., Farah M.E., Freymüller E., et al. Choriocapillaris photodynamic therapy using indocyanine green // Am J Ophthalmol. 2001. Vol. 132, N 4. P. 557–565. doi: 10.1016/s0002-9394(01)01138-2 |
| [121] |
Onda N, Kimura M, Yoshida T, Shibutani M. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging. Int J Cancer. 2016;139(3):673–682. doi: 10.1002/ijc.30102 |
| [122] |
Onda N., Kimura M., Yoshida T., Shibutani M. Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging // Int J Cancer. 2016. Vol. 139, N 3. P. 673–682. doi: 10.1002/ijc.30102 |
| [123] |
Wang Z, Ju Y, Ali Z, et al. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nat Commun. 2019;10(1):4418. doi: 10.1038/s41467-019-12142-4 |
| [124] |
Wang Z., Ju Y., Ali Z., et al. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics // Nat Commun. 2019. Vol. 10, N 1. P. 4418. doi: 10.1038/s41467-019-12142-4 |
| [125] |
Zhao H, Xu J, Feng C, et al. Tailoring aggregation extent of photosensitizers to boost phototherapy potency for eliciting systemic antitumor immunity. Adv Mater. 2022;34(8):e2106390. doi: 10.1002/adma.202106390 |
| [126] |
Zhao H., Xu J., Feng C., et al. Tailoring aggregation extent of photosensitizers to boost phototherapy potency for eliciting systemic antitumor immunity // Adv Mater. 2022. Vol. 34, N 8. P. e2106390. doi: 10.1002/adma.202106390 |
| [127] |
Heshmati Aghda N, Torres Hurtado S, Abdulsahib SM, et al. Dual photothermal/chemotherapy of melanoma cells with albumin nanoparticles carrying indocyanine green and doxorubicin leads to immunogenic cell death. Macromol Biosci. 2022;22(2):e2100353. doi: 10.1002/mabi.202100353 |
| [128] |
Heshmati Aghda N., Torres Hurtado S., Abdulsahib S.M., et al. Dual photothermal/chemotherapy of melanoma cells with albumin nanoparticles carrying indocyanine green and doxorubicin leads to immunogenic cell death // Macromol Biosci. 2022. Vol. 22, N 2. P. e2100353. doi: 10.1002/mabi.202100353 |
| [129] |
Gao H, Bai Y, Chen L, et al. Self-assembly nanoparticles for overcoming multidrug resistance and imaging-guided chemo-photothermal synergistic cancer therapy. Int J Nanomedicine. 2020;15:809–819. doi: 10.2147/IJN.S232449 |
| [130] |
Gao H., Bai Y., Chen L., et al. Self-assembly nanoparticles for overcoming multidrug resistance and imaging-guided chemo-photothermal synergistic cancer therapy // Int J Nanomedicine. 2020. Vol. 15. P. 809–819. doi: 10.2147/IJN.S232449 |
| [131] |
Xie W, Zhu S, Yang B, et al. The destruction of laser-induced phase-transition nanoparticles triggered by low-intensity ultrasound: an innovative modality to enhance the immunological treatment of ovarian cancer cells. Int J Nanomedicine. 2019;14:9377–9393. doi: 10.2147/IJN.S208404 |
| [132] |
Xie W., Zhu S., Yang B., et al. The destruction of laser-induced phase-transition nanoparticles triggered by low-intensity ultrasound: an innovative modality to enhance the immunological treatment of ovarian cancer cells // Int J Nanomedicine. 2019. Vol. 14. P. 9377–9393. doi: 10.2147/IJN.S208404 |
| [133] |
Doix B, Trempolec N, Riant O, Feron O. Low photosensitizer dose and early radiotherapy enhance antitumor immune response of photodynamic therapy-based dendritic cell vaccination. Front Oncol. 2019;9:811. doi: 10.3389/fonc.2019.00811 |
| [134] |
Doix B., Trempolec N., Riant O., Feron O. Low photosensitizer dose and early radiotherapy enhance antitumor immune response of photodynamic therapy-based dendritic cell vaccination // Front Oncol. 2019. Vol. 9. P. 811. doi: 10.3389/fonc.2019.00811 |
| [135] |
Pinto A, Mace Y, Drouet F, et al. A new ER-specific photosensitizer unravels 1O2-driven protein oxidation and inhibition of deubiquitinases as a generic mechanism for cancer PDT. Oncogene. 2016;35(30):3976–3985. doi: 10.1038/onc.2015.474 |
| [136] |
Pinto A., Mace Y., Drouet F., et al. A new ER-specific photosensitizer unravels (1)O2-driven protein oxidation and inhibition of deubiquitinases as a generic mechanism for cancer PDT // Oncogene. 2016. Vol. 35, N 30. P. 3976–3985. doi: 10.1038/onc.2015.474 |
| [137] |
Yu H, Chen B, Huang H, et al. AIE-active photosensitizers: manipulation of reactive oxygen species generation and applications in photodynamic therapy. Biosensors (Basel). 2022;12(5):348. doi: 10.3390/bios12050348 |
| [138] |
Yu H., Chen B., Huang H., et al. AIE-active photosensitizers: manipulation of reactive oxygen species generation and applications in photodynamic therapy // Biosensors (Basel). 2022. Vol. 12, N 5. P. 348. doi: 10.3390/bios12050348 |
| [139] |
Huang C, Zhang T, Li Y, et al. Type-I AIE photosensitizer triggered cascade catalysis system for tumor targeted therapy and postoperative recurrence suppression. Chemical Engineering Journal. 2022;446(3):136381. doi: 10.1016/j.cej.2022.136381 |
| [140] |
Huang C., Zhang T., Li Y., et al. Type-I AIE photosensitizer triggered cascade catalysis system for tumor targeted therapy and postoperative recurrence suppression // Chemical Engineering Journal. 2022. Vol. 446, N 3. P. 136381. doi: 10.1016/j.cej.2022.136381 |
| [141] |
Qi J, Jia S, Kang X, et al. Semiconducting polymer nanoparticles with surface-mimicking protein secondary structure as lysosome-targeting chimaeras for self-synergistic cancer immunotherapy. Adv Mater. 2022;34(31):e2203309. doi: 10.1002/adma.202203309 |
| [142] |
Qi J., Jia S., Kang X., et al. Semiconducting polymer nanoparticles with surface-mimicking protein secondary structure as lysosome-targeting chimaeras for self-synergistic cancer immunotherapy // Adv Mater. 2022. Vol. 34, N 31. P. e2203309. doi: 10.1002/adma.202203309 |
| [143] |
Chen D, Yu Q, Huang X, et al. A highly-efficient type i photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy. Small. 2020;16(23):e2001059. Corrected and republished from: Small. 2023;19(32):e2305388. doi: 10.1002/smll.202001059 |
| [144] |
Chen D., Yu Q., Huang X., et al. A highly-efficient type I photosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy // Small. 2020. Vol. 16, N 23. P. e2001059. Corrected and republished from: Small. 2023. Vol. 19, N 32. P. e2305388. doi: 10.1002/smll.202001059 |
| [145] |
Luo S, Luo X, Wang X, et al. Tailoring multifunctional small molecular photosensitizers to in vivo self-assemble with albumin to boost tumor-preferential accumulation, NIR imaging, and photodynamic/photothermal/immunotherapy. Small. 2022;18(27):e2201298. doi: 10.1002/smll.202201298 |
| [146] |
Luo S., Luo X., Wang X., et al. Tailoring multifunctional small molecular photosensitizers to in vivo self-assemble with albumin to boost tumor-preferential accumulation, NIR imaging, and photodynamic/photothermal/immunotherapy // Small. 2022. Vol. 18, N 27. P. e2201298. doi: 10.1002/smll.202201298 |
| [147] |
Ling YY, Wang WJ, Hao L, et al. Self-amplifying iridium(III) photosensitizer for ferroptosis-mediated immunotherapy against transferrin receptor-overexpressing cancer. Small. 2022;18(49):e2203659. doi: 10.1002/smll.202203659 |
| [148] |
Ling Y.Y., Wang W.J., Hao L., et al. Self-amplifying iridium(III) photosensitizer for ferroptosis-mediated immunotherapy against transferrin receptor-overexpressing cancer // Small. 2022. Vol. 18, N 49. P. e2203659. doi: 10.1002/smll.202203659 |
| [149] |
Lobo ACS, Gomes-da-Silva LC, Rodrigues-Santos P, et al. Immune responses after vascular photodynamic therapy with redaporfin. J Clin Med. 2019;9(1):104. doi: 10.3390/jcm9010104 |
| [150] |
Lobo A.C.S., Gomes-da-Silva L.C., Rodrigues-Santos P., et al. Immune responses after vascular photodynamic therapy with redaporfin // J Clin Med. 2019. Vol. 9, N 1. P. 104. doi: 10.3390/jcm9010104 |
| [151] |
Gomes-da-Silva LC, Zhao L, Bezu L, et al. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus. EMBO J. 2018;37(13):e98354. doi: 10.15252/embj.201798354 |
| [152] |
Gomes-da-Silva L.C., Zhao L., Bezu L., et al. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus // EMBO J. 2018. Vol. 37, N 13. P. e98354. doi: 10.15252/embj.201798354 |
| [153] |
Calori IR, Tedesco AC. Lipid vesicles loading aluminum phthalocyanine chloride: formulation properties and disaggregation upon intracellular delivery. J Photochem Photobiol B. 2016;160:240–247. doi: 10.1016/j.jphotobiol.2016.03.050 |
| [154] |
Calori I.R., Tedesco A.C. Lipid vesicles loading aluminum phthalocyanine chloride: formulation properties and disaggregation upon intracellular delivery // J Photochem Photobiol B. 2016. Vol. 160. P. 240–247. doi: 10.1016/j.jphotobiol.2016.03.050 |
| [155] |
Chilakamarthi U, Giribabu L. Photodynamic therapy: past, present and future. The Chemical Record. 2017;17(8):775–802. doi: 10.1002/tcr.201600121 |
| [156] |
Chilakamarthi U., Giribabu L. Photodynamic therapy: past, present and future // Chem Rec. 2017. Vol. 17, N 8. P. 775–802. doi: 10.1002/tcr.201600121 |
| [157] |
Madsen SJ, Christie C, Huynh K, et al. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats. J Biomed Opt. 2018;23(2):1–7. doi: 10.1117/1.JBO.23.2.028001 |
| [158] |
Madsen S.J., Christie C., Huynh K., et al. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats // J Biomed Opt. 2018. Vol. 23, N 2. P. 1–7. doi: 10.1117/1.JBO.23.2.028001 |
| [159] |
Zheng BY, Li SZ, Zheng BD, et al. Phthalocyanine-based photosensitizers combined with anti-PD-L1 for highly efficient photodynamic immunotherapy. Dyes and Pigments. 2021;185(5):108907. doi: 10.1016/j.dyepig.2020.108907 |
| [160] |
Zheng B.Y., Li S.Z., Zheng B.D., et al. Phthalocyanine-based photosensitizers combined with anti-PD-L1 for highly efficient photodynamic immunotherapy // Dyes and Pigments. 2021. Vol. 185, N 5. P. 108907. doi: 10.1016/j.dyepig.2020.108907 |
| [161] |
Chen J, Wang Y, Fang Y, et al. Improved photodynamic anticancer activity and mechanisms of a promising zinc(II) phthalocyanine-quinoline conjugate photosensitizer in vitro and in vivo. Biomed Opt Express. 2020;11(7):3900–3912. doi: 10.1364/BOE.394186 |
| [162] |
Chen J., Wang Y., Fang Y., et al. Improved photodynamic anticancer activity and mechanisms of a promising zinc(II) phthalocyanine-quinoline conjugate photosensitizer in vitro and in vivo // Biomed Opt Express. 2020. Vol. 11, N 7. P. 3900. doi: 10.1364/BOE.394186 |
| [163] |
Wang H, Jing G, Niu J, et al. A mitochondria-anchored supramolecular photosensitizer as a pyroptosis inducer for potent photodynamic therapy and enhanced antitumor immunity. J Nanobiotechnology. 2022;20(1):513. doi: 10.1186/s12951-022-01719-9 |
| [164] |
Wang H., Jing G., Niu J., et al. A mitochondria-anchored supramolecular photosensitizer as a pyroptosis inducer for potent photodynamic therapy and enhanced antitumor immunity // J Nanobiotechnology. 2022. Vol. 20, N 1. P. 513. doi: 10.1186/s12951-022-01719-9 |
| [165] |
Zhang Y, Cheung YK, Ng DKP, Fong WP. Immunogenic necroptosis in the anti-tumor photodynamic action of BAM-SiPc, a silicon(IV) phthalocyanine-based photosensitizer. Cancer Immunol Immunother. 2021;70(2):485–495. doi: 10.1007/s00262-020-02700-x |
| [166] |
Zhang Y., Cheung Y.K., Ng D.K.P., Fong W.P. Immunogenic necroptosis in the anti-tumor photodynamic action of BAM-SiPc, a silicon(IV) phthalocyanine-based photosensitizer // Cancer Immunol Immunother. 2021. Vol. 70, N 2. P. 485–495. doi: 10.1007/s00262-020-02700-x |
| [167] |
Baron ED, Malbasa CL, Santo-Domingo D, et al. Silicon phthalocyanine (pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial. Lasers Surg Med. 2010;42(10):728–735. doi: 10.1002/lsm.20984 |
| [168] |
Baron E.D., Malbasa C.L., Santo-Domingo D., et al. Silicon phthalocyanine (Pc 4) photodynamic therapy is a safe modality for cutaneous neoplasms: results of a phase 1 clinical trial // Lasers Surg Med. 2010. Vol. 42, N 10. P. 728–735. doi: 10.1002/lsm.20984 |
| [169] |
Rodrigues MC, de Sousa Júnior WT, Mundim T, et al. Induction of Immunogenic cell death by photodynamic therapy mediated by aluminum-phthalocyanine in nanoemulsion. Pharmaceutics. 2022;14(1):196. doi: 10.3390/pharmaceutics14010196 |
| [170] |
Rodrigues M.C., de Sousa Júnior W.T., Mundim T., et al. Induction of immunogenic cell death by photodynamic therapy mediated by aluminum-phthalocyanine in nanoemulsion // Pharmaceutics. 2022. Vol. 14, N 1. P. 196. doi: 10.3390/pharmaceutics14010196 |
| [171] |
Li Y, Yu Y, Kang L, Lu Y. Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells. Int J Clin Exp Med. 2014;7(12):4867–4876. |
| [172] |
Li Y., Yu Y., Kang L., Lu Y. Effects of chlorin e6-mediated photodynamic therapy on human colon cancer SW480 cells // Int J Clin Exp Med. 2014. Vol. 7, N 12. P. 4867–4876. |
| [173] |
Kimura Y, Aoki H, Soyama T, et al. Photodynamic therapy using mannose-conjugated chlorin e6 increases cell surface calreticulin in cancer cells and promotes macrophage phagocytosis. Med Oncol. 2022;39(5):82. doi: 10.1007/s12032-022-01674-3 |
| [174] |
Kimura Y., Aoki H., Soyama T., et al. Photodynamic therapy using mannose-conjugated chlorin e6 increases cell surface calreticulin in cancer cells and promotes macrophage phagocytosis // Med Oncol. 2022. Vol. 39, N 5. P. 82. doi: 10.1007/s12032-022-01674-3 |
| [175] |
Korbelik M. Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy. Lasers Surg Med. 2018;50(5):491–498. doi: 10.1002/lsm.22810 |
| [176] |
Korbelik M. Role of cell stress signaling networks in cancer cell death and antitumor immune response following proteotoxic injury inflicted by photodynamic therapy // Lasers Surg Med. 2018. Vol. 50, N 5. P. 491–498. doi: 10.1002/lsm.22810 |
| [177] |
Zhang Z, Sang W, Xie L, et al. Polyphenol-based nanomedicine evokes immune activation for combination cancer treatment. Angew Chem Int Ed Engl. 2021;60(4):1967–1975. doi: 10.1002/anie.202013406 |
| [178] |
Zhang Z., Sang W., Xie L., et al. Polyphenol-based nanomedicine evokes immune activation for combination cancer treatment // Angew Chem Int Ed Engl. 2021. Vol. 60, N 4. P. 1967–1975. doi: 10.1002/anie.202013406 |
| [179] |
Liu H, Hu Y, Sun Y, et al. Co-delivery of bee venom melittin and a photosensitizer with an organic–inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy. ACS Nano. 2019;13(11):12638–12652. doi: 10.1021/acsnano.9b04181 |
| [180] |
Liu H., Hu Y., Sun Y., et al. Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy // ACS Nano. 2019. Vol. 13, N 11. P. 12638–12652. doi: 10.1021/acsnano.9b04181 |
| [181] |
Shixiang Y, Xi S, Junliang L, et al. Antitumor efficacy of a photodynamic therapy-generated dendritic cell glioma vaccine. Med Oncol. 2011;28 Suppl. 1:S453-S461. doi: 10.1007/s12032-010-9713-y |
| [182] |
Shixiang Y., Xi S., Junliang L., et al. Antitumor efficacy of a photodynamic therapy-generated dendritic cell glioma vaccine // Med Oncol. 2011. Vol. 28, Suppl. 1. P. S453–S461. doi: 10.1007/s12032-010-9713-y |
| [183] |
Yow CM, Chen JY, Mak NK, et al. Cellular uptake, subcellular localization and photodamaging effect of Temoporfin (mTHPC) in nasopharyngeal carcinoma cells: comparison with hematoporphyrin derivative. Cancer Lett. 2000;157(2):123–131. doi: 10.1016/s0304-3835(00)00453-5 |
| [184] |
Yow C.M., Chen J.Y., Mak N.K., et al. Cellular uptake, subcellular localization and photodamaging effect of temoporfin (mTHPC) in nasopharyngeal carcinoma cells: comparison with hematoporphyrin derivative // Cancer Lett. 2000. Vol. 157, N 2. P. 123–131. doi: 10.1016/s0304-3835(00)00453-5 |
| [185] |
Yue W, Chen L, Yu L, et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun. 2019;10(1):2025. doi: 10.1038/s41467-019-09760-3 |
| [186] |
Yue W., Chen L., Yu L., et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice // Nat Commun. 2019. Vol. 10, N 1. P. 2025. doi: 10.1038/s41467-019-09760-3 |
| [187] |
Ogawa M, Tomita Y, Nakamura Y, et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget. 2017;8(6):10425–10436. doi: 10.18632/oncotarget.14425 |
| [188] |
Ogawa M., Tomita Y., Nakamura Y., et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity // Oncotarget. 2017. Vol. 8, N 6. P. 10425–10436. doi: 10.18632/oncotarget.14425 |
| [189] |
Wakiyama H, Furusawa A, Okada R, et al. Increased immunogenicity of a minimally immunogenic tumor after cancer-targeting near infrared photoimmunotherapy. Cancers (Basel). 2020;12(12):3747. doi: 10.3390/cancers12123747 |
| [190] |
Wakiyama H., Furusawa A., Okada R., et al. Increased immunogenicity of a minimally immunogenic tumor after cancer-targeting near infrared photoimmunotherapy // Cancers (Basel). 2020. Vol. 12, N 12. P. 3747. doi: 10.3390/cancers12123747 |
| [191] |
Nakajima K, Ogawa M. Phototoxicity in near-infrared photoimmunotherapy is influenced by the subcellular localization of antibody-IR700. Photodiagnosis Photodyn Ther. 2020;31:101926. doi: 10.1016/j.pdpdt.2020.101926 |
| [192] |
Nakajima K., Ogawa M. Phototoxicity in near-infrared photoimmunotherapy is influenced by the subcellular localization of antibody-IR700 // Photodiagnosis Photodyn Ther. 2020. Vol. 31. P. 101926. doi: 10.1016/j.pdpdt.2020.101926 |
| [193] |
Maruoka Y, Furusawa A, Okada R, et al. Near-infrared photoimmunotherapy combined with CTLA4 checkpoint blockade in syngeneic mouse cancer models. Vaccines (Basel). 2020;8(3):528. doi: 10.3390/vaccines8030528 |
| [194] |
Maruoka Y., Furusawa A., Okada R., et al. Near-infrared photoimmunotherapy combined with CTLA4 checkpoint blockade in syngeneic mouse cancer models // Vaccines (Basel). 2020. Vol. 8, N 3. P. 528. doi: 10.3390/vaccines8030528 |
| [195] |
Yamashita S, Kojima M, Onda N, Shibutani M. In vitro comparative study of near-infrared photoimmunotherapy and photodynamic therapy. Cancers (Basel). 2023;15(13):3400. doi: 10.3390/cancers15133400 |
| [196] |
Yamashita S., Kojima M., Onda N., Shibutani M. In vitro comparative study of near-infrared photoimmunotherapy and photodynamic therapy // Cancers (Basel). 2023. Vol. 15, N 13. P. 3400. doi: 10.3390/cancers15133400 |
| [197] |
Nagaya T, Friedman J, Maruoka Y, et al. Host immunity following near-infrared photoimmunotherapy is enhanced with PD-1 checkpoint blockade to eradicate established antigenic tumors. Cancer Immunol Res. 2019;7(3):401–413. doi: 10.1158/2326-6066.CIR-18-0546 |
| [198] |
Nagaya T., Friedman J., Maruoka Y., et al. Host immunity following near-infrared photoimmunotherapy is enhanced with PD-1 checkpoint blockade to eradicate established antigenic tumors // Cancer Immunol Res. 2019. Vol. 7, N 3. P. 401–413. doi: 10.1158/2326-6066.CIR-18-0546 |
| [199] |
Kataoka H, Nishie H, Hayashi N, et al. New photodynamic therapy with next-generation photosensitizers. Ann Transl Med. 2017;5(8):183. doi: 10.21037/atm.2017.03.59 |
| [200] |
Kataoka H., Nishie H., Hayashi N., et al. New photodynamic therapy with next-generation photosensitizers // Ann Transl Med. 2017. Vol. 5, N 8. P. 183. doi: 10.21037/atm.2017.03.59 |
| [201] |
Tanaka M, Kataoka H, Yano S, et al. Immunogenic cell death due to a new photodynamic therapy (PDT) with glycoconjugated chlorin (G-chlorin). Oncotarget. 2016;7(30):47242–47251. doi: 10.18632/oncotarget.9725 |
| [202] |
Tanaka M., Kataoka H., Yano S., et al. Immunogenic cell death due to a new photodynamic therapy (PDT) with glycoconjugated chlorin (G-chlorin) // Oncotarget. 2016. Vol. 7, N 30. P. 47242–47251. doi: 10.18632/oncotarget.9725 |
| [203] |
Yang W, Zhang F, Deng H, et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano. 2020;14(1):620–631. doi: 10.1021/acsnano.9b07212 |
| [204] |
Yang W., Zhang F., Deng H., et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy // ACS Nano. 2020. Vol. 14, N 1. P. 620–631. doi: 10.1021/acsnano.9b07212 |
| [205] |
Konda P, Lifshits LM, Roque JA 3rd, et al. Discovery of immunogenic cell death-inducing ruthenium-based photosensitizers for anticancer photodynamic therapy. Oncoimmunology. 2020;10(1):1863626. doi: 10.1080/2162402X.2020.1863626 |
| [206] |
Konda P., Lifshits L.M., Roque J.A. 3rd, et al. Discovery of immunogenic cell death-inducing ruthenium-based photosensitizers for anticancer photodynamic therapy // Oncoimmunology. 2021. Vol. 10, N 1. doi: 10.1080/2162402X.2020.1863626 |
| [207] |
Jia S, Gao Z, Wu Z, et al. Sonosensitized aggregation-induced emission dots with capacities of immunogenic cell death induction and multivalent blocking of programmed cell death-ligand 1 for amplified antitumor immunotherapy. CCS Chemistry. 2022;4(2):501–514. doi: 10.31635/ccschem.021.202101458 |
| [208] |
Jia S., Gao Z., Wu Z., et al. Sonosensitized aggregation-induced emission dots with capacities of immunogenic cell death induction and multivalent blocking of programmed cell death-ligand 1 for amplified antitumor immunotherapy // CCS Chemistry. 2022. Vol. 4, N 2. P. 501–514. doi: 10.31635/ccschem.021.202101458 |
| [209] |
Turubanova VD, Mishchenko TA, Balalaeva IV, et al. Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. Sci Rep. 2021;11(1):7205. doi: 10.1038/s41598-021-86354-4 |
| [210] |
Turubanova V.D., Mishchenko T.A., Balalaeva I.V., et al. Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death // Sci Rep. 2021. Vol. 11, N 1. P. 7205. doi: 10.1038/s41598-021-86354-4 |
| [211] |
Shestakova LN, Lyubova TS, Lermontova SA, et al. Comparative analysis of Tetra(2-naphthyl)tetracyano-porphyrazine and its iron complex as photosensitizers for anticancer photodynamic therapy. Pharmaceutics. 2022;14(12):2655. doi: 10.3390/pharmaceutics14122655 |
| [212] |
Shestakova L.N., Lyubova T.S., Lermontova S.A., et al. Comparative analysis of Tetra(2-naphthyl)tetracyano-porphyrazine and its iron complex as photosensitizers for anticancer photodynamic therapy // Pharmaceutics. 2022. Vol. 14, N 12. P. 2655. doi: 10.3390/pharmaceutics14122655 |
| [213] |
Redkin TS, Sleptsova EE, Turubanova VD, et al. Dendritic cells pulsed with tumor lysates induced by tetracyanotetra(aryl)porphyrazines-based photodynamic therapy effectively trigger anti-tumor immunity in an orthotopic mouse glioma model. Pharmaceutics. 2023;15(10):2430. doi: 10.3390/pharmaceutics15102430 |
| [214] |
Redkin T.S., Sleptsova E.E., Turubanova V.D., et al. Dendritic cells pulsed with tumor lysates induced by tetracyanotetra(aryl)porphyrazines-based photodynamic therapy effectively trigger anti-tumor immunity in an orthotopic mouse glioma model // Pharmaceutics. 2023. Vol. 15, N 10. P. 2430. doi: 10.3390/pharmaceutics15102430 |
| [215] |
Balalaeva IV, Mishchenko TA, Turubanova VD, et al. Cyanoarylporphyrazines with high viscosity sensitivity: a step towards dosimetry-assisted photodynamic cancer treatment. Molecules. 2021;26(19):5816. doi: 10.3390/molecules26195816 |
| [216] |
Balalaeva I.V., Mishchenko T.A., Turubanova V.D., et al. Cyanoarylporphyrazines with high viscosity sensitivity: a step towards dosimetry-assisted photodynamic cancer treatment // Molecules. 2021. Vol. 26, N 19. P. 5816. doi: 10.3390/molecules26195816 |
| [217] |
Valančiūtė A, Mathieson L, O’Connor RA, et al. Phototherapeutic induction of immunogenic cell death and CD8+ T cell-granzyme b mediated cytolysis in human lung cancer cells and organoids. Cancers (Basel). 2022;14(17):4119. doi: 10.3390/cancers14174119 |
| [218] |
Valančiūtė A., Mathieson L., O’Connor R.A., et al. Phototherapeutic induction of immunogenic cell death and CD8+ T cell-granzyme B mediated cytolysis in human lung cancer cells and organoids // Cancers (Basel). 2022. Vol. 14, N 17. P. 4119. doi: 10.3390/cancers14174119 |
| [219] |
Lim DJ. Methylene blue-based nano and microparticles: fabrication and applications in photodynamic therapy. Polymers (Basel). 2021;13(22):3955. doi: 10.3390/polym13223955 |
| [220] |
Lim D.J. Methylene blue-based nano and microparticles: fabrication and applications in photodynamic therapy // Polymers (Basel). 2021. Vol. 13, N 22. P. 3955. doi: 10.3390/polym13223955 |
| [221] |
Panzarini E, Inguscio V, Fimia GM, Dini L. Rose Bengal acetate photodynamic therapy (RBAc-PDT) induces exposure and release of damage-associated molecular patterns (DAMPs) in human HeLa cells. PLoS One. 2014;9(8):e105778. doi: 10.1371/journal.pone.0105778 |
| [222] |
Panzarini E. et al. Rose Bengal acetate photodynamic therapy (RBAc-PDT) induces exposure and release of damage-associated molecular patterns (DAMPs) in human HeLa cells // PLoS One. 2014. Vol. 9, N 8. P. e105778. doi: 10.1371/journal.pone.0105778 |
| [223] |
Alibasha A, Ghosh M. Recent developments of porphyrin photosensitizers in photodynamic therapy. ChemRxiv. 2023. |
| [224] |
Alibasha A., Ghosh M. Recent developments of porphyrin photosensitizers in photodynamic therapy // ChemRxiv. 2023. |
| [225] |
Deng H, Zhou Z, Yang W, et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett. 2020;20(3):1928–1933. doi: 10.1021/acs.nanolett.9b05210 |
| [226] |
Deng H., Zhou Z., Yang W., et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy // Nano Lett. 2020. Vol. 20, N 3. P. 1928–1933. doi: 10.1021/acs.nanolett.9b05210 |
| [227] |
Yang G, Lu SB, Li C, et al. Type I macrophage activator photosensitizer against hypoxic tumors. Chem Sci. 2021;12(44):14773–14780. doi: 10.1039/d1sc04124j |
| [228] |
Yang G., Lu S.B., Li C., et al. Type I macrophage activator photosensitizer against hypoxic tumors // Chem Sci. 2021. Vol. 12, N 44. P. 14773–14780. doi: 10.1039/d1sc04124j |
| [229] |
Sun Z, Zhao M, Wang W, et al. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death. Cancer Lett. 2023;554:216032. doi: 10.1016/j.canlet.2022.216032 |
| [230] |
Sun Z., Zhao M., Wang W., et al. 5-ALA mediated photodynamic therapy with combined treatment improves anti-tumor efficacy of immunotherapy through boosting immunogenic cell death // Cancer Lett. 2023. Vol. 554. P. 216032. doi: 10.1016/j.canlet.2022.216032 |
| [231] |
Mahmoudi K, Garvey KL, Bouras A, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol. 2019;141(3):595–607. doi: 10.1007/s11060-019-03103-4 |
| [232] |
Mahmoudi K., Garvey K.L., Bouras A., et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas // J Neurooncol. 2019. Vol. 141, N 3. P. 595–607. doi: 10.1007/s11060-019-03103-4 |
| [233] |
Skalkos D, Gioti E, Stalikas CD, et al. Photophysical properties of Hypericum perforatum L. extracts — novel photosensitizers for PDT. J Photochem Photobiol B. 2006;82(2):146–151. doi: 10.1016/j.jphotobiol.2005.11.001 |
| [234] |
Skalkos D., Gioti E., Stalikas C.D., et al. Photophysical properties of hypericum perforatum L. extracts — novel photosensitizers for PDT // J Photochem Photobiol B. 2006. Vol. 82, N 2. P. 146–151. doi: 10.1016/j.jphotobiol.2005.11.001 |
| [235] |
Garg AD, Elsen S, Krysko DV, et al. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget. 2015;6(29):26841–26860. Corrected and republished from: Oncotarget. 2018;9(49):29284. doi: 10.18632/oncotarget.4754 |
| [236] |
Garg A.D., Elsen S., Krysko D.V., et al. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal // Oncotarget. 2015. Vol. 6, N 29. P. 26841–26860. Corrected and republished from: Oncotarget. 2018. Vol. 9, N 49. P. 29284. doi: 10.18632/oncotarget.4754 |
| [237] |
Garg AD, Krysko DV, Vandenabeele P, Agostinis P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol Immunother. 2012;61(2):215–221. Corrected and republished from: Cancer Immunol Immunother. 2018;67(7):1179–1180. doi: 10.1007/s00262-011-1184-2 |
| [238] |
Garg A.D., Krysko D.V., Vandenabeele P., Agostinis P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin // Cancer Immunol Immunother. 2012. Vol. 61, N 2. P. 215–221. Corrected and republished from: Cancer Immunol Immunother. 2018. doi: 10.1007/s00262-011-1184-2 |
| [239] |
Garg AD, Vandenberk L, Koks C, et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med. 2016;8(328):328ra27. doi: 10.1126/scitranslmed.aae0105 |
| [240] |
Garg A.D., Vandenberk L., Koks C., et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma // Sci Transl Med. 2016. Vol. 8, N 328. P. 328ra27. doi: 10.1126/scitranslmed.aae0105 |
| [241] |
Tatsuno K, Yamazaki T, Hanlon D, et al. Extracorporeal photochemotherapy induces bona fide immunogenic cell death. Cell Death Dis. 2019;10(8):578. doi: 10.1038/s41419-019-1819-3 |
| [242] |
Tatsuno K., Yamazaki T., Hanlon D., et al. Extracorporeal photochemotherapy induces bona fide immunogenic cell death // Cell Death Dis. 2019. Vol. 10, N 8. P. 578. doi: 10.1038/s41419-019-1819-3 |
| [243] |
Yang W, Zhu G, Wang S, et al. In Situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano. 2019;13(3):3083–3094. doi: 10.1021/acsnano.8b08346 |
| [244] |
Yang W., Zhu G., Wang S., et al. In situ dendritic cell vaccine for effective cancer immunotherapy // ACS Nano. 2019. Vol. 13, N 3. P. 3083–3094. doi: 10.1021/acsnano.8b08346 |
| [245] |
Calixto G, Bernegossi J, de Freitas L, et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21(3):342. doi: 10.3390/molecules21030342 |
| [246] |
Calixto G.M., Bernegossi J., de Freitas L.M., et al. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review // Molecules. 2016. Vol. 21, N 3. P. 342. doi: 10.3390/molecules21030342 |
| [247] |
Kudinova NV, Berezov TT. Photodynamic therapy of cancer: search for ideal photosensitizer. Biochem Mosc Suppl B Biomed Chem. 2010;4(1):95–103. doi: 10.1134/S1990750810010129 |
| [248] |
Kudinova N.V., Berezov T.T. Photodynamic therapy of cancer: search for ideal photosensitizer // Biochem Mosc Suppl B Biomed Chem. 2010. Vol. 4, N 1. P. 95–103. doi: 10.1134/S1990750810010129 |
| [249] |
MacRobert AJ, Bown SG, Phillips D. What are the ideal photoproperties for a sensitizer? Ciba Found Symp. 1989;146:4–16. doi: 10.1002/9780470513842.ch2 |
| [250] |
MacRobert A.J., Bown S.G., Phillips D. What are the ideal photoproperties for a sensitizer? // Ciba Found Symp. 1989. Vol. 146. P. 4–16. doi: 10.1002/9780470513842.ch2 |
| [251] |
Simões JCS, Sarpaki S, Papadimitroulas P, et al. Conjugated photosensitizers for imaging and PDT in cancer research. J Med Chem. 2020;63(23):14119–14150. doi: 10.1021/acs.jmedchem.0c00047 |
| [252] |
Simões J.C.S., Sarpaki S., Papadimitroulas P., et al. Conjugated photosensitizers for imaging and PDT in cancer research // J Med Chem. 2020. Vol. 63, N 23. P. 14119–14150. doi: 10.1021/acs.jmedchem.0c00047 |
| [253] |
Uzdensky AB. Cellular and molecular mechanisms of photodynamic therapy. Saint Petersburg: Nauka; 2010. (In Russ). EDN: QLXTXH |
| [254] |
Узденский А.Б. Клеточно-молекулярные механизмы фотодинамической терапии. Санкт-Петербург: Наука, 2010. EDN: QLXTXH |
| [255] |
Broekgaarden M, Weijer R, van Gulik TM, et al. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev. 2015;34(4):643–690. doi: 10.1007/s10555-015-9588-7 |
| [256] |
Broekgaarden M., Weijer R., van Gulik T.M., et al. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies // Cancer Metastasis Rev. 2015. Vol. 34, N 4. P. 643–690. doi: 10.1007/s10555-015-9588-7 |
| [257] |
Sobhani N, Samadani AA. Implications of photodynamic cancer therapy: an overview of PDT mechanisms basically and practically. J Egypt Natl Canc Inst. 2021;33(1):34. doi: 10.1186/s43046-021-00093-1 |
| [258] |
Sobhani N., Samadani A.A. Implications of photodynamic cancer therapy: an overview of PDT mechanisms basically and practically // J Egypt Natl Canc Inst. 2021. Vol. 33, N 1. P. 34. doi: 10.1186/s43046-021-00093-1 |
| [259] |
Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905. doi: 10.1093/jnci/90.12.889 |
| [260] |
Dougherty T.J., Gomer C.J., Henderson B.W., et al. Photodynamic therapy // J Natl Cancer Inst. 1998. Vol. 90, N 12. P. 889–905. doi: 10.1093/jnci/90.12.889 |
| [261] |
Kessel D. Subcellular targets for photodynamic therapy: implications for initiation of apoptosis and autophagy. J Natl Compr Canc Netw. 2012;10 Suppl. 2:S56–S59. doi: 10.6004/jnccn.2012.0177 |
| [262] |
Kessel D. Subcellular targets for photodynamic therapy: implications for initiation of apoptosis and autophagy // J Natl Compr Canc Netw. 2012. Vol. 10 Suppl 2(0 2). P. S56–S59. doi: 10.6004/jnccn.2012.0177 |
| [263] |
Hsieh YJ, Wu CC, Chang CJ, Yu JS. Subcellular localization of Photofrin® determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol. 2003;194(3):363–375. doi: 10.1002/jcp.10273 |
| [264] |
Hsieh Y.J., Wu C.C., Chang C.J., Yu J.S. Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets // J Cell Physiol. 2003. Vol. 194, N 3. P. 363–375. doi: 10.1002/jcp.10273 |
| [265] |
Iulianna T, Kuldeep N, Eric F. The Achilles’ heel of cancer: targeting tumors via lysosome-induced immunogenic cell death. Cell Death Dis. 2022;13(5):509. doi: 10.1038/s41419-022-04912-8 |
| [266] |
Iulianna T., Kuldeep N., Eric F. The Achilles’ heel of cancer: targeting tumors via lysosome-induced immunogenic cell death // Cell Death Dis. 2022. Vol. 13, N 5. P. 509. doi: 10.1038/s41419-022-04912-8 |
| [267] |
Béroud C, Soussi T. p53 gene mutation: software and database. Nucleic Acids Res. 1998;26(1):200–204. doi: 10.1093/nar/26.1.200 |
| [268] |
Béroud C., Soussi T. p53 gene mutation: software and database // Nucleic Acids Res. 1998. Vol. 26, N 1. P. 200–204. doi: 10.1093/nar/26.1.200 |
| [269] |
Kessel D. Critical PDT theory III: events at the molecular and cellular level. Int J Mol Sci. 2022;23(11):6195. doi: 10.3390/ijms23116195 |
| [270] |
Kessel D. Critical PDT theory III: events at the molecular and cellular level // Int J Mol Sci. 2022. Vol. 23, N 11. P. 6195. doi: 10.3390/ijms23116195 |
| [271] |
Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157–1180. doi: 10.1007/s00204-013-1034-4 |
| [272] |
Sinha K., Das J., Pal P.B., Sil P.C. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis // Arch Toxicol. 2013. Vol. 87, N 7. P. 1157–1180. doi: 10.1007/s00204-013-1034-4 |
| [273] |
Marchi S, Patergnani S, Missiroli S, et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 2018;69:62–72. doi: 10.1016/j.ceca.2017.05.003 |
| [274] |
Marchi S., Patergnani S., Missiroli S., et al. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death // Cell Calcium. 2018. Vol. 69. P. 62–72. doi: 10.1016/j.ceca.2017.05.003 |
| [275] |
Verfaillie T, Rubio N, Garg AD, et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 2012;19(11):1880–1891. doi: 10.1038/cdd.2012.74 |
| [276] |
Verfaillie T., Rubio N., Garg A.D., et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress // Cell Death Differ. 2012. Vol. 19, N 11. P. 1880–1891. doi: 10.1038/cdd.2012.74 |
| [277] |
Garg AD, Krysko D V., Vandenabeele P, Agostinis P. The emergence of phox-ER stress induced immunogenic apoptosis. Oncoimmunology. 2012;1(5):786–788. doi: 10.4161/onci.19750 |
| [278] |
Garg A.D., Krysko D.V., Vandenabeele P., Agostinis P. The emergence of phox-ER stress induced immunogenic apoptosis // Oncoimmunology. 2012. Vol. 1, N 5. P. 786–788. doi: 10.4161/onci.19750 |
| [279] |
de Almeida DRQ, dos Santos AF, Wailemann RAM, et al. Necroptosis activation is associated with greater methylene blue-photodynamic therapy-induced cytotoxicity in human pancreatic ductal adenocarcinoma cells. Photochem Photobiol Sci. 2023;22(4):729–744. doi: 10.1007/s43630-022-00347-4 |
| [280] |
de Almeida D.R.Q., Dos Santos A.F., Wailemann R.A.M., et al. Necroptosis activation is associated with greater methylene blue-photodynamic therapy-induced cytotoxicity in human pancreatic ductal adenocarcinoma cells // Photochem Photobiol Sci. 2023. Vol. 22, N 4. P. 729–744. doi: 10.1007/s43630-022-00347-4 |
| [281] |
Chen X, Shi C, He M, et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):352. doi: 10.1038/s41392-023-01570-w |
| [282] |
Chen X., Shi C., He M., et al. Endoplasmic reticulum stress: molecular mechanism and therapeutic targets // Signal Transduct Target Ther. 2023. Vol. 8, N 1. P. 352. doi: 10.1038/s41392-023-01570-w |
| [283] |
Zheng L, Li Z, Wang Z, et al. The oxidative stress, mitochondrial pathway apoptosis, and the antagonistic effects of chrysophanol in SH-SY5Y cells via DTPP-induced photodynamic therapy. Photodiagnosis Photodyn Ther. 2022;40:103062. doi: 10.1016/j.pdpdt.2022.103062 |
| [284] |
Zheng L., Li Z., Wang Z., et al. The oxidative stress, mitochondrial pathway apoptosis, and the antagonistic effects of chrysophanol in SH-SY5Y cells via DTPP-induced photodynamic therapy // Photodiagnosis Photodyn Ther. 2022. Vol. 40. P. 103062. doi: 10.1016/j.pdpdt.2022.103062 |
| [285] |
Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188308. doi: 10.1016/j.bbcan.2019.07.003 |
| [286] |
Donohoe C., Senge M.O., Arnaut L.G., Gomes-da-Silva L.C. Cell death in photodynamic therapy: from oxidative stress to anti-tumor immunity // Biochim Biophys Acta Rev Cancer. 2019. Vol. 1872, N 2. P. 188308. doi: 10.1016/j.bbcan.2019.07.003 |
| [287] |
Fiaschi T, Chiarugi P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol. 2012;2012:762825. doi: 10.1155/2012/762825 |
| [288] |
Fiaschi T., Chiarugi P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison // Int J Cell Biol. 2012. Vol. 2012. P. 762825. doi: 10.1155/2012/762825 |
| [289] |
Averbeck D, Rodriguez-Lafrasse C. Role of mitochondria in radiation responses: epigenetic, metabolic, and signaling impacts. Int J Mol Sci. 2021;22(20):11047. doi: 10.3390/ijms222011047 |
| [290] |
Averbeck D., Rodriguez-Lafrasse C. Role of mitochondria in radiation responses: epigenetic, metabolic, and signaling impacts // Int J Mol Sci. 2021. Vol. 22, N 20. P. 11047. doi: 10.3390/ijms222011047 |
| [291] |
Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020;16(1):3–17. doi: 10.1080/15548627.2019.1603547 |
| [292] |
Xu Y., Shen J., Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases // Autophagy. 2020. Vol. 16, N 1. P. 3–17. doi: 10.1080/15548627.2019.1603547 |
| [293] |
Picca A, Calvani R, Coelho-Junior HJ, Marzetti E. Cell death and inflammation: the role of mitochondria in health and disease. Cells. 2021;10(3):537. doi: 10.3390/cells10030537 |
| [294] |
Picca A., Calvani R., Coelho-Junior H.J., Marzetti E. Cell death and inflammation: the role of mitochondria in health and disease // Cells. 2021. Vol. 10, N 3. P. 537. doi: 10.3390/cells10030537 |
| [295] |
Banoth B, Cassel SL. Mitochondria in innate immune signaling. Transl Res. 2018;202:52–68. doi: 10.1016/j.trsl.2018.07.014 |
| [296] |
Banoth B., Cassel S.L. Mitochondria in innate immune signaling // Transl Res. 2018. Vol. 202. P. 52–68. doi: 10.1016/j.trsl.2018.07.014 |
| [297] |
West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011;11(6):389–402. doi: 10.1038/nri2975 |
| [298] |
West A.P., Shadel G.S., Ghosh S. Mitochondria in innate immune responses // Nat Rev Immunol. 2011. Vol. 11, N 6. P. 389–402. doi: 10.1038/nri2975 |
| [299] |
Zhou J, Wang G, Chen Y, et al. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019;23(8):4854–4865. doi: 10.1111/jcmm.14356 |
| [300] |
Zhou J., Wang G., Chen Y., et al. Immunogenic cell death in cancer therapy: present and emerging inducers // J Cell Mol Med. 2019. Vol. 23, N 8. P. 4854–4865. doi: 10.1111/jcmm.14356 |
| [301] |
Zhu M, Yang M, Zhang J, et al. Immunogenic cell death induction by ionizing radiation. Front Immunol. 2021;12:705361. doi: 10.3389/fimmu.2021.705361 |
| [302] |
Zhu M., Yang M., Zhang J., et al. Immunogenic cell death induction by ionizing radiation // Front Immunol. 2021. Vol. 12. P. 705361. doi: 10.3389/fimmu.2021.705361 |
| [303] |
Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–662. Corrected and republished from: Nat Rev Drug Discov. 2016;15(9):660. doi: 10.1038/nrd4663 |
| [304] |
Kaufman H.L., Kohlhapp F.J., Zloza A. Oncolytic viruses: a new class of immunotherapy drugs // Nat Rev Drug Discov. 2015. Vol. 14, N 9. P. 642–662. Corrected and republished from: Nat Rev Drug Discov. 2016. Vol. 15. P. 660. doi: 10.1038/nrd4663 |
| [305] |
Li W, Yang J, Luo L, et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun. 2019;10(1):3349. doi: 10.1038/s41467-019-11269-8 |
| [306] |
Li W., Yang J., Luo L., et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death // Nat Commun. 2019. Vol. 10, N 1. P. 3349. doi: 10.1038/s41467-019-11269-8 |
| [307] |
Li Z, Chu Z, Yang J, et al. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy. ACS Nano. 2022;16(9):15471–15483. doi: 10.1021/acsnano.2c08013 |
| [308] |
Li Z., Chu Z., Yang J., et al. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy // ACS Nano. 2022. Vol. 16, N 9. P. 15471–15483. doi: 10.1021/acsnano.2c08013 |
| [309] |
Guo J, Yu Z, Sun D, et al. Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Mol Cancer. 2021;20(1):10. doi: 10.1186/s12943-020-01297-0 |
| [310] |
Guo J., Yu Z., Sun D., et al. Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma // Mol Cancer. 2021. Vol. 20, N 1. P. 10. doi: 10.1186/s12943-020-01297-0 |
| [311] |
Ecker V, Stumpf M, Brandmeier L, et al. Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia. Nat Commun. 2021;12(1):3526. doi: 10.1038/s41467-021-23752-2 |
| [312] |
Ecker V., Stumpf M., Brandmeier L., et al. Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia // Nat Commun. 2021. Vol. 12, N 1. P. 3526. doi: 10.1038/s41467-021-23752-2 |
| [313] |
Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci. 2014;13(3):474–487. doi: 10.1039/c3pp50333j |
| [314] |
Garg A.D., Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses // Photochem Photobiol Sci. 2014. Vol. 13, N 3. P. 474–487. doi: 10.1039/c3pp50333j |
| [315] |
Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–885. doi: 10.1038/sj.embor.7400779 |
| [316] |
Szegezdi E., Logue S.E., Gorman A.M., Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis // EMBO Rep. 2006. Vol. 7, N 9. P. 880–885. doi: 10.1038/sj.embor.7400779 |
| [317] |
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102. doi: 10.1038/nrm3270 |
| [318] |
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond // Nat Rev Mol Cell Biol. 2012. Vol. 13, N 2. P. 89–102. doi: 10.1038/nrm3270 |
| [319] |
Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta. 2013;1833(12):3460–3470. doi: 10.1016/j.bbamcr.2013.06.028 |
| [320] |
Sano R., Reed J.C. ER stress-induced cell death mechanisms // Biochim Biophys Acta. 2013. Vol. 1833, N 12. P. 3460–3470. doi: 10.1016/j.bbamcr.2013.06.028 |
| [321] |
Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A. 2000;97(26):14376–14381. doi: 10.1073/pnas.97.26.14376 |
| [322] |
Sperandio S., de Belle I., Bredesen D.E. An alternative, nonapoptotic form of programmed cell death // Proc Natl Acad Sci U S A. 2000. Vol. 97, N 26. P. 14376–14381. doi: 10.1073/pnas.97.26.14376 |
| [323] |
Kessel D, Obaid G, Rizvi I. Critical PDT theory II: current concepts and indications. Photodiagnosis Photodyn Ther. 2022;39:102923. doi: 10.1016/j.pdpdt.2022.102923 |
| [324] |
Kessel D., Obaid G., Rizvi I. Critical PDT theory II: current concepts and indications // Photodiagnosis Photodyn Ther. 2022. Vol. 39. P. 102923. doi: 10.1016/j.pdpdt.2022.102923 |
| [325] |
Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: a mutual interplay. Redox Biol. 2015;6:260–271. doi: 10.1016/j.redox.2015.08.010 |
| [326] |
Görlach A., Bertram K., Hudecova S., Krizanova O. Calcium and ROS: a mutual interplay // Redox Biol. 2015. Vol. 6. P. 260–271. doi: 10.1016/j.redox.2015.08.010 |
| [327] |
Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020;126(2):280–293. doi: 10.1161/CIRCRESAHA.119.316306 |
| [328] |
Bauer T.M., Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death // Circ Res. 2020. Vol. 126, N 2. P. 280–293. doi: 10.1161/CIRCRESAHA.119.316306 |
| [329] |
Carreras-Sureda A, Pihán P, Hetz C. Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses. Cell Calcium. 2018;70:24–31. doi: 10.1016/j.ceca.2017.08.004 |
| [330] |
Carreras-Sureda A., Pihán P., Hetz C. Calcium signaling at the endoplasmic reticulum: fine-tuning stress responses // Cell Calcium. 2018. Vol. 70. P. 24–31. doi: 10.1016/j.ceca.2017.08.004 |
| [331] |
Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol. 2022;13:1017400. doi: 10.3389/fimmu.2022.1017400 |
| [332] |
Xie D., Wang Q., Wu G. Research progress in inducing immunogenic cell death of tumor cells // Front Immunol. 2022. Vol. 13. P. 1017400. doi: 10.3389/fimmu.2022.1017400 |
| [333] |
Chen Y, Zhou Z, Min W. Mitochondria, oxidative stress and innate immunity. Front Physiol. 2018;9:1487. doi: 10.3389/fphys.2018.01487 |
| [334] |
Chen Y., Zhou Z., Min W. Mitochondria, oxidative stress and innate immunity // Front Physiol. 2018. Vol. 9. P. 1487. doi: 10.3389/fphys.2018.01487 |
| [335] |
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer. Cancer Cell. 2020;38(2):167–197. doi: 10.1016/j.ccell.2020.06.001 |
| [336] |
Hayes J.D., Dinkova-Kostova A.T., Tew K.D. Oxidative stress in cancer // Cancer Cell. 2020. Vol. 38, N 2. P. 167–197. doi: 10.1016/j.ccell.2020.06.001 |
| [337] |
Maharjan PS, Bhattarai HK. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death. J Oncol. 2022;2022:7211485. doi: 10.1155/2022/7211485 |
| [338] |
Maharjan P.S., Bhattarai H.K. Singlet oxygen, photodynamic therapy, and mechanisms of cancer cell death // J Oncol. 2022. Vol. 2022. P. 7211485. doi: 10.1155/2022/7211485 |
| [339] |
Krysko O, Løve Aaes T, Bachert C, et al. Many faces of DAMPs in cancer therapy. Cell Death Dis. 2013;4(5):e631. doi: 10.1038/cddis.2013.156 |
| [340] |
Krysko O., Løve Aaes T., Bachert C., et al. Many faces of DAMPs in cancer therapy // Cell Death Dis. 2013. Vol. 4, N 5. P. e631. doi: 10.1038/cddis.2013.156 |
| [341] |
Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8(10):1124–1132. doi: 10.1038/ncb1482 |
| [342] |
Yousefi S., Perozzo R., Schmid I., et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis // Nat Cell Biol. 2006. Vol. 8, N 10. P. 1124–1132. doi: 10.1038/ncb1482 |
| [343] |
Zhang A, Wu Y, Lai HWL, Yew DT. Apoptosis — a brief review. Neuroembryology. 2004;3(1):47–59. doi: 10.1159/000085404 |
| [344] |
Zhang A., Wu Y., Lai H.W.L., Yew D.T. Apoptosis — a brief review // Neuroembryology. 2004. Vol. 3, N 1. P. 47–59. doi: 10.1159/000085404 |
| [345] |
D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–592. doi: 10.1002/cbin.11137 |
| [346] |
D’Arcy M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy // Cell Biol Int. 2019. Vol. 43, N 6. P. 582–592. doi: 10.1002/cbin.11137 |
| [347] |
Van Cruchten S, Van den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol. 2002;31(4):214–223. doi: 10.1046/j.1439-0264.2002.00398.x |
| [348] |
Van Cruchten S., Van den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis // Anat Histol Embryol. 2002. Vol. 31, N 4. P. 214–223. doi: 10.1046/j.1439-0264.2002.00398.x |
| [349] |
Kepp O, Tesniere A, Schlemmer F, et al. Immunogenic cell death modalities and their impact on cancer treatment. Apoptosis. 2009;14(4):364–375. doi: 10.1007/s10495-008-0303-9 |
| [350] |
Kepp O., Tesniere A., Schlemmer F., et al. Immunogenic cell death modalities and their impact on cancer treatment // Apoptosis. 2009. Vol. 14, N 4. P. 364–375. doi: 10.1007/s10495-008-0303-9 |
| [351] |
Galluzzi L, Vitale I, Vacchelli E, Kroemer G. Cell death signaling and anticancer therapy. Front Oncol. 2011;1:5. doi: 10.3389/fonc.2011.00005 |
| [352] |
Galluzzi L., Vitale I., Vacchelli E., Kroemer G. Cell death signaling and anticancer therapy // Front Oncol. 2011. Vol. 1. P. 5. doi: 10.3389/fonc.2011.00005 |
| [353] |
Richardson DR, Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta. 1997;1331(1):1–40. doi: 10.1016/s0304-4157(96)00014-7 |
| [354] |
Richardson D.R., Ponka P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells // Biochim Biophys Acta. 1997. Vol. 1331, N 1. P. 1–40. doi: 10.1016/s0304-4157(96)00014-7 |
| [355] |
Ursini F, Maiorino M, Valente M, et al. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta. 1982;710(2):197–211. doi: 10.1016/0005-2760(82)90150-3 |
| [356] |
Ursini F., Maiorino M., Valente M., et al. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides // Biochim Biophys Acta. 1982. Vol. 710, N 2. P. 197–211. doi: 10.1016/0005-2760(82)90150-3 |
| [357] |
Chen Y, Zheng W, Li Y, et al. Apoptosis induced by methylene-blue-mediated photodynamic therapy in melanomas and the involvement of mitochondrial dysfunction revealed by proteomics. Cancer Sci. 2008;99(10):2019–2027. doi: 10.1111/j.1349-7006.2008.00910.x |
| [358] |
Chen Y., Zheng W., Li Y., et al. Apoptosis induced by methylene-blue-mediated photodynamic therapy in melanomas and the involvement of mitochondrial dysfunction revealed by proteomics // Cancer Sci. 2008. Vol. 99, N 10. P. 2019–2027. doi: 10.1111/j.1349-7006.2008.00910.x |
| [359] |
Agostinis P, Breyssens H, Buytaert E, Hendrickx N. Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci. 2004;3(8):721–729. doi: 10.1039/b315237e |
| [360] |
Agostinis P., Buytaert E., Breyssens H., Hendrickx N. Regulatory pathways in photodynamic therapy induced apoptosis // Photochem Photobiol Sci. 2004. Vol. 3, N 8. P. 721–729. doi: 10.1039/b315237e |
| [361] |
Lu Y, Jiao R, Chen X, et al. Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa cell. J Cell Biochem. 2008;105(6):1451–1460. doi: 10.1002/jcb.21965 |
| [362] |
Lu Y., Jiao R., Chen X., et al. Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa cell // J Cell Biochem. 2008. Vol. 105, N 6. P. 1451–1460. doi: 10.1002/jcb.21965 |
| [363] |
Xie Q, Li Z, Liu Y, et al. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater. 2021;134:716–729. doi: 10.1016/j.actbio.2021.07.052 |
| [364] |
Xie Q., Li Z., Liu Y., et al. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer // Acta Biomater. 2021. Vol. 134. P. 716–729. doi: 10.1016/j.actbio.2021.07.052 |
| [365] |
Humeau J, Lévesque S, Kroemer G, Pol JG. Gold standard assessment of immunogenic cell death in oncological mouse models. Methods Mol Biol. 2019;1884:297–315. doi: 10.1007/978-1-4939-8885-3_21 |
| [366] |
Humeau J., Lévesque S., Kroemer G., Pol J.G. Gold standard assessment of immunogenic cell death in oncological mouse models // Methods Mol Biol. 2019. Vol. 1884. P. 297–315. doi: 10.1007/978-1-4939-8885-3_21 |
| [367] |
Panzarini E, Inguscio V, Dini L. Timing the multiple cell death pathways initiated by Rose Bengal acetate photodynamic therapy. Cell Death Dis. 2011;2(6):e169. doi: 10.1038/cddis.2011.51 |
| [368] |
Panzarini E., Inguscio V., Dini L. Timing the multiple cell death pathways initiated by Rose Bengal acetate photodynamic therapy // Cell Death Dis. 2011. Vol. 2, N 6. P. e169. doi: 10.1038/cddis.2011.51 |
| [369] |
Cincotta L, Szeto D, Lampros E, et al. Benzophenothiazine and benzoporphyrin derivative combination phototherapy effectively eradicates large murine sarcomas. Photochem Photobiol. 1996;63(2):229–237. doi: 10.1111/j.1751-1097.1996.tb03019.x |
| [370] |
Cincotta L., Szeto D., Lampros E., et al. Benzophenothiazine and benzoporphyrin derivative combination phototherapy effectively eradicates large murine sarcomas // Photochem Photobiol. 1996. Vol. 63, N 2. P. 229–237. doi: 10.1111/j.1751-1097.1996.tb03019.x |
| [371] |
Guo R, Li Y, Wang Z, et al. Hypoxia-inducible factor-1α and nuclear factor-κB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells. Cancer Sci. 2019;110(5):1665–1675. doi: 10.1111/cas.13989 |
| [372] |
Guo R., Li Y., Wang Z., et al. Hypoxia-inducible factor-1α and nuclear factor-κB play important roles in regulating programmed cell death ligand 1 expression by epidermal growth factor receptor mutants in non-small-cell lung cancer cells // Cancer Sci. 2019. Vol. 110, N 5. P. 1665–1675. doi: 10.1111/cas.13989 |
| [373] |
Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211(5):781–790. doi: 10.1084/jem.20131916 |
| [374] |
Noman M.Z., Desantis G., Janji B., et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation // J Exp Med. 2014. Vol. 211, N 5. P. 781–790. doi: 10.1084/jem.20131916 |
| [375] |
Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10. doi: 10.1186/s12943-018-0928-4 |
| [376] |
Jiang X., Wang J., Deng X., et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape // Mol Cancer. 2019. Vol. 18, N 1. P. 10. doi: 10.1186/s12943-018-0928-4 |
Eco-Vector
/
| 〈 |
|
〉 |