BONE AND SOFT TISSUES INTEGRATION IN POROUS TITANIUM IMPLANTS (EXPERIMENTAL RESEARCH)

R. M. Tikhilov , I. I. Shubnyakov , A. O. Denisov , V. A. Konev , I. V. Gofman , P. M. Mikhailova , G. I. Netylko , A. V. Vasiliev , L. O. Anisimova , S. S. Bilyk

Traumatology and Orthopedics of Russia ›› 2018, Vol. 24 ›› Issue (2) : 95 -107.

PDF (3569KB)
Traumatology and Orthopedics of Russia ›› 2018, Vol. 24 ›› Issue (2) : 95 -107. DOI: 10.21823/2311-2905-2018-24-2-95-107
Theoretical and experimental studies
other

BONE AND SOFT TISSUES INTEGRATION IN POROUS TITANIUM IMPLANTS (EXPERIMENTAL RESEARCH)

Author information +
History +
PDF (3569KB)

Abstract

Aim. It’s common that revision arthroplasty of the large joints demands replacing of bone defects of irregular geometrical shapes and simultaneous restoring of support ability and ability to integrate surrounding muscular and tendinous structures into an implant that is required for a complete restoration of joint function.

The purpose. To experimentally study the process of integration for muscular and bone tissue as well as tendinous and ligamentous structures into porous titanium materials.

Material and methods. During in vivo experiment the authors created a standardized bone defect in 6 rabbits of chinchilla breed at the point of patella ligament attachment as well as a delamination area of muscular tissue in latissimus dorsi. Both knee joints and both latissimus dorsi were used in each animal. Study group included titanium implants with three-dimensional mesh structure. Control group — solid titanium implants with standard porosity. Titanium implants were produced by additive technologies with preliminary prototyping. The porosity corresponded to trabecular metal, striations — 0.45, pores size —100–200 microns. Study and control components were implanted in the identical conditions into the corresponding anatomical sites. Postoperative AP and lateral roentgenograms of knee joints were performed for all animals. Morphological research was conducted on day 60 after the implantation and strength properties were studied at day 90 after the implantation.

Results. The authors observed bony ingrowth into implant pores with minimal volume of fibrous tissue, a distinct connective integration was reported represented by a dense fibrous tissue in the pores of components implanted into the muscular tissue. Testing of fixation strength of the study implants demonstrated a clearly superior strength of soft and bone tissue integration into the experimental mesh implants produced using additive technologies.

Keywords

integration of soft tissue / bony integration / porous titanium implants / experimental model / bone defect / additive technologies

Cite this article

Download citation ▾
R. M. Tikhilov, I. I. Shubnyakov, A. O. Denisov, V. A. Konev, I. V. Gofman, P. M. Mikhailova, G. I. Netylko, A. V. Vasiliev, L. O. Anisimova, S. S. Bilyk. BONE AND SOFT TISSUES INTEGRATION IN POROUS TITANIUM IMPLANTS (EXPERIMENTAL RESEARCH). Traumatology and Orthopedics of Russia, 2018, 24(2): 95-107 DOI:10.21823/2311-2905-2018-24-2-95-107

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

1. Шубняков И.И., Тихилов Р.М., Николаев Н.С., Григоричева Л.Г., Овсянкин А.В., Черный А.Ж. и др. Эпидемиология первичного эндопротезирования тазобедренного сустава на основании данных регистра артропластики РНИИТО им. Р.Р. Вредена. Травматология и ортопедия России. 2017;23(2): 81-101. DOI: 10.21823/2311-2905-2017-23-2-81-101.

[2]

2. K urtz S., Mowat F., Ong K., Chan N., Lau E., Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87(7):1487-1497. D OI: 10.2106/JBJS.D.02441.

[3]

3. K urtz S., Ong K., Lau E., Mowat F., Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780-785. DOI: 10.2106/JBJS.F.00222.

[4]

4. Тихилов Р.М., Шубняков И.И., Коваленко А.Н., Тотоев З.А., Лю Б., Билык С.С. Структура ранних ревизий эндопротезирования тазобедренного сустава. Травматология и ортопедия России. 2014;(2):5-13. DOI: 10.21823/2311-2905-2014-0-2-5-13.

[5]

5. Brown J.M., Mistry J.B., Cherian J.J., Elmallah R.K., Chughtai M., Harwin S.F., Mont M.A. Femoral component revision of total hip arthroplasty. Orthopedics. 2016;39(6):1129-1139. D OI: 10.3928/01477447-20160819-06.

[6]

6. Huang C., Qin L., Yan W., Weng X., Huang X. Clinical evaluation following the use of mineralized collagen graft for bone defects in revision total hip arthroplasty. Regen Biomater. 2015;4(2):245-249. DOI: 10.1093/rb/rbv022.

[7]

7. Garcia-Cimbrelo E., Garcia-Rey E., Cruz-Pardos A. The extent of the bone defect affects the outcome of femoral reconstruction in revision surgery with impacted bone grafting: a five- to 17-year follow-up study. J Bone Joint Surg Br. 2011;93(11):1457-1464. D OI: 10.1302/0301-620X.93B11.27321.

[8]

8. Алиев М.Д. Злокачественные опухоли костей. Саркомы костей, мягких тканей и опухоли кожи. 2010;(2):3-8.

[9]

9. Антонов А.К., Цымбал М.В., Антонов Ю.К., Осипов А.В., Гречко А.Т. Металлополимерное эндопротезирование костей при первичных и вторичных опухолях опорно-двигательного аппарата у больных пожилого возраста. Клиническая геронтология. 2008;14(4):34-38.

[10]

10. Han G., Wang Y., Bi W. Reconstruction using massive allografts after resection of extremity osteosarcomas the study design: A retrospective cohort study. Int J Surg. 2015;21:108-111. D OI: 10.1016/j.ijsu.2015.07.686.

[11]

11. Gosal G.S., Boparai A., Makkar G.S. Long-term outcome of endoprosthetic replacement for proximal femur giant cell tumor. Niger J Surg. 2015;21(2):143-145. D OI: 10.4103/1117-6806.162583.

[12]

12. Barut N., Anract P., Babinet A., Biau D. Periprosthetic fractures around tumor endoprostheses: a retrospective analysis of eighteen cases. Int Orthop. 2015;39(9):1851-1856. DOI: 10.1007/s00264-015-2915-3.

[13]

13. Карякин Н.Н., Горбатов Р.О. Прецизионные персонифицированные направители для эндопротезирования коленного сустава. Современные проблемы науки и образования. 2016;(5):23.

[14]

14. Wong K.C., Kumta S.M., Geel N.V., Demol J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015;20(1):14-23. D OI: 10.3109/10929088.2015.1076039.

[15]

15. Сафина Н., Сафронова Т., Баринов С. Биокерамика в медицине. Стекло и керамика. 2007;(2):34-36.

[16]

16. Чеканов А.С., Волошин В.П., Лекишвили М.В., Очкуренко А.А., Мартыненко Д.В. Реконструкция тазобедренного сустава деминерализованными аллоимплантатами при ревизионном эндопротезировании. Вестник травматологии и ортопедии им. Н.Н. Приорова. 2015;(1):43-46.

[17]

17. Chvapil M., Holusa R., Kliment K., Stoll M. Some chemical and biological characteristics of a new collagen-polymer compound material. J Biomed Muter Res. 1969;3(2):315-322.

[18]

18. Donath K., Breuner G. A method for the study of undecalcified bones and teeth with attached soft tissues. The Säge-Schliff (sawing and grinding) technique. J Oral Pathol. 1982;11(4):318-326.

[19]

19. Васильев А.В., Волков А.В., Большакова Г.Б., Гольдштейн Д.В. Характеристика неоостеогенеза на модели критического дефекта теменных костей крыс с помощью традиционной и трёхмерной морфометрии. Гены и клетки. 2014;4:121-127.

[20]

20. Hayes J.S., Klöppel H., Wieling R., Sprecher C.M., Richards R.G. Influence of steel implant surface microtopography on soft and hard tissue integration. J Biomed Mater Res B Appl Biomater. 2018;106(2):705-715. D OI: 10.1002/jbm.b.33878.

[21]

21. van Dijk I.A., Beker A.F., Jellema W., Nazmi K., Wu G., Wismeijer D. et al. Histatin 1 enhances cell adhesion to titanium in an implant integration model. J Dent Res. 2017;96(4):430-436. DOI: 10.1177/0022034516681761.

[22]

22. Yamada M., Ueno T., Minamikawa H., Ikeda T., Nakagawa K., Ogawa T. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation. Clin Oral Implants Res. 2013;24(9):991-1001. D OI: 10.1111/j.1600-0501.2012.02507.x.

[23]

23. Tsukimura N., Ueno T., Iwasa F., Minamikawa H., Sugita Y., Ishizaki K. et al. Bone integration capability of alkaliand heat-treated nanobimorphic Ti-15Mo-5Zr-3Al. Acta Biomater. 2011;7(12):4267-4277. D OI: 10.1016/j.actbio.2011.08.016.

[24]

24. Ueno T., Tsukimura N., Yamada M., Ogawa T. Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Biomaterials. 2011;32(30):7297-7308. D OI: 10.1016/j.biomaterials. 2011.06.033.

[25]

25. Fradique R., Correia T.R., Miguel S.P., de Sá K.D., Figueira D.R., Mendonça A.G., Correia I.J. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. J Mater Sci Mater Med. 2016;27(4):69. D OI: 10.1007/s10856-016-5681-x.

[26]

26. Ries M.D., Cabalo A., Bozic K.J., Anderson M. Porous tantalum patellar augmentation: the importance of residual bone stock. Clin Orthop Relat Res. 2006;452: 166-170. DOI: 10.1097/01.blo.0000229359.27491.9f.

[27]

27. Kwong Y., Desai V.V. The use of a tantalum-based Augmentation Patella in patients with a previous patellectomy. Knee. 2008;15(2):91-94. D OI: 10.1016/j.knee.2008.01.001.

[28]

28. Kumar N.S., Wilton T. Trabecular metal patella--is it really doomed to fail in the totally patellar — deficient knee? A case report of patellar reconstruction with a novel technique. Knee. 2014;21(3):779-783. D OI: 10.1016/j.knee.2014.02.006.

[29]

29. Rieger E., Dupret-Bories A., Salou L., Metz-Boutigue M.H., Layrolle P., Debry C., Lavalle P., Vrana N.E. Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants. Nanoscale. 2015;7(21):9908-9918. DOI: 10.1039/c5nr01237f.

[30]

30. Радкевич А.А., Кузьменко И.И., Ходоренко В.И. Опыт использования сплавов на основе никелида титана в хирургии грыж передней брюшной стенки. Имплантаты с памятью формы. 2003;1-2:28-32.

[31]

31. Сердюк В.В. Диагностика и лечение повреждений ахиллова сухожилия. Хирургия. Журнал им. Н.И. Пирогова. 1974;11:40-42.

[32]

32. Ланшаков В.А., Гюнтер В.Э., Панов А.А., Панова А.С., Баховудинов А.Х. Хирургическое лечение разрывов ахиллова сухожилия с использованием сетчатых имплантатов из никелида титана. Сибирский медицинский журнал (Томск). 2008;3-2:38-41.

[33]

33. Bobyn J.D., Wilson G.J., MacGregor D.C., Pilliar R.M., Weatherly G.C. Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants. J Biomed Mater Res. 1982;16(5):571-584.

[34]

34. Reach J.S. Jr., Dickey I.D., Zobitz M.E., Adams J.E., Scully S.P., Lewallen D.G. Direct tendon attachment and healing to porous tantalum: anexperimental animal study. J Bone Joint Surg Am. 2007;89(5):1000-1009. D OI: 10.2106/JBJS.E.00886.

[35]

35. Itälä A., Heijink A., Leerapun T., Reach J.S., An K.N., Lewallen D.G. Successful canine patellar tendon reattachment to porous tantalum. Clin Orthop Relat Res. 2007;463:202-207.

[36]

36. Hacking S.A., Bobyn J.D., Toh K., Tanzer M., Krygier J.J. Fibrous tissue ingrowth and attachment to porous tantalum. J Biomed Mater Res. 2000;52(4):631-638.

[37]

37. Wren T.A., Yerby S.A., Beaupre G.S., Carter D.R. Mechanical properties of the human achilles tendon. Clin Biomech (Bristol, Avon). 2001;16(3):245-251.

[38]

38. Inoue N., Ikeda K., Aro H.T., Frassica F.J., Sim F.H., Chao E.Y. Biologic tendon fixation to metallic impiant augmented with autogenous canceilous bone graft and bone marrow in a canine model. J Orthop Res. 2002;20:957-966.

AI Summary AI Mindmap
PDF (3569KB)

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/