CRITICAL ANALYSIS OF THE MECHANOSTAT THEORY PART I. REORGANIZATION MECHANISMS OF SKELETAL ARCHITECTURE

A. S. Avrunin , R. M. Tikhilov , I. I. Shubnyakov , L. K. Parshin , B. E. Melnikov

Traumatology and Orthopedics of Russia ›› 2012, Vol. 18 ›› Issue (2) : 105 -116.

PDF
Traumatology and Orthopedics of Russia ›› 2012, Vol. 18 ›› Issue (2) : 105 -116. DOI: 10.21823/2311-2905-2012--2-105-116
Reviews
other

CRITICAL ANALYSIS OF THE MECHANOSTAT THEORY PART I. REORGANIZATION MECHANISMS OF SKELETAL ARCHITECTURE

Author information +
History +
PDF

Abstract

The paper contains a critical analysis of the mechanostat theory. It is shown that for continuous modeling and osteoklastic-and-osteoblastic remodeling is not providing the necessary safety margin of skeletal structures and reduce risk of fractures. It is established that at each level of the hierarchical organization of a skeleton there are also other mechanisms of its reorganization. The functioning of this system is controlled by mechanisms of osteocytes and purposefully provides two effects: the first -preservation of bone structures deformability according to demanded productivity of convective fluid movement mechanism of a lacunary-tubular system, second - the optimization of the cross-section of the cavities of a lacunary-tubular system, respectively, the required level of throughput for the flow of fluid. As a result, the parameters of mechanical-metabolic environment surrounding the osteocytes are stored in the homeostatic limits, which increases cell viability, and hence bone and skeleton as a whole. However, this is often at the expense of the strength properties of bone structures.

Cite this article

Download citation ▾
A. S. Avrunin, R. M. Tikhilov, I. I. Shubnyakov, L. K. Parshin, B. E. Melnikov. CRITICAL ANALYSIS OF THE MECHANOSTAT THEORY PART I. REORGANIZATION MECHANISMS OF SKELETAL ARCHITECTURE. Traumatology and Orthopedics of Russia, 2012, 18(2): 105-116 DOI:10.21823/2311-2905-2012--2-105-116

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Аврунин А.С., Тихилов Р.М., Паршин Л.К., Шубняков И.И. Механизм жесткости и прочности в норме и при старении организма. Наноуровневая модель. Гений ортопедии. 2008; 3: 59-6615.

[2]

Аврунин А.С., Тихилов Р.М., Паршин Л.К., Шубняков И.И. Наноуровневый механизм жесткости и прочности кости. Травматология и ортопедия России. 2008; 2: 77-83.

[3]

Аврунин А.С., Тихилов Р.М., Шубняков И.И., Емельянов В.Г. Неинвазивный клинический метод оценки остеоцитарного ремоделирования. Новые возможности двухэнергетической рентгеновской абсорбциометрии. Ортопедия, травматология и протезирование. 2008; 2: 67-74.

[4]

Аврунин А.С., Тихилов Р.М., Шубняков И.И., Емельянов В.Г. Oценивает ли двухэнергетическая рентгеновская абсорбциометрия параметры физиологического обмена минерального матрикса? Гений ортопедии. 2008; 1: 41-49.

[5]

Аврунин А.С., Тихилов Р.М., Шубняков И.И. Динамическая оценка остеоцитарного ремоделирования костной ткани при использовании неинвазивного метода. Морфология. 2009; 2: 66-73.

[6]

Аврунин А.С., Тихилов Р.М., Паршин Л.К., Мельников Б.Е., Шубняков И.И. Иерархическая организация скелета — фактор, регламентирующий структуру усталостных повреждений. Часть I. Теоретическое обоснование. Травматология и ортопедия России. 2009; 3: 50-58.

[7]

Аврунин А.С., Тихилов Р.М., Шубняков И.И. Медицинские и околомедицинские причины высокого внимания общества к проблеме потери костной массы. Анализ динамики и структуры публикаций по остеопорозу. Гений ортопедии. 2009; 3: 59-66.

[8]

Аврунин, А.С., Тихилов Р.М., Паршин Л.К., Мельников Б.Е. Иерархическая организация скелета — фактор, регламентирующий структуру усталостных повреждений. Часть II. Гипотетическая модель формирования и разрушения связей между объединениями кристаллитов. Травматология и ортопедия России. 2010; 1: 48-57.

[9]

Аврунин А.С., Тихилов Р.М., Паршин Л.К., Мельников Б.Е., Плиев Д.Г. Иерархия спиральной организации структур скелета. Взаимосвязь структуры и функции. Морфология. 2010; 6: 69-75.

[10]

Аврунин А.С., Мельников Б.Е., Паршин Л.К., Тихилов Р.М., Шубняков И.И. О физической природе жёсткости и прочности костной ткани. Научнотехнические ведомости СПбГПУ. 2010; 3: 205-210.

[11]

Аврунин А.С., Тихилов Р.М. Остеоцитарное ремоделирование костной ткани: история вопроса, морфологические маркеры. Морфология. 2011; 1: 86-94.

[12]

Денисов-Никольский Ю.И., Миронов С.П., Омельяненко Н.П., Матвейчук И.В. Актуальные проблемы теоретической и клинической остеоартрологии. М.: Новости; 2001. 336 с.

[13]

Корнилов, Н.В., Аврунин А.С. Адаптационные процессы в органах скелета. СПб.: МОРСАР АВ; 2001. 296 с.

[14]

Меерсон Ф.З. Адаптационная медицина: механизмы и защитные эффекты адаптации. М.: Нурохіа medical ltd; 1993. 331 c.

[15]

Ньюман У., Ньюман М. Минеральный обмен кости. М.: Иностранная литература; 1961. 270 с.

[16]

Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. СПб.: Гиппократ; 2002. 683 с.

[17]

Ревулл П.А. Патология кости. М.: Медицина; 1993. 376 с.

[18]

Мельникова Б.Е. ред. Сопротивление материалов. 2-е изд. СПб.: Лань; 2007. 560 с.

[19]

Achard J. Physikochemische Untersuchungen am lamellaren knochen. Zeitschrift fur Zellforschung und mikroskopische anatomie. 1935; 23(4): 573-88.

[20]

Adachi T., Adachi T., Aonuma Y., Tanaka M., Hojo M., Takano-Yamamoto T., Kamioka H. Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body. J. Biomech. 2009; 42: 1989-95.

[21]

Agarwall S.K., Judd H.L. Менопауза. В кн.: Риггз Б.Л., Мелтон Л.Д.Ш., ред. Остеопороз. СПб., 2000. 381-402.

[22]

Akkus O., Polyakova-Akkus A., Adar F., Schaffler M.B. Aging of microstructural compartments in human compact bone. J. Bone Mineral. Research. 2003 Jun; 18(6): 1012-1019.

[23]

Alcobendas M., Baud C.A., Castanet J., Structural changes of the periosteocytic area in vipera aspis (l.) (ophidia, viperidae) bone tissue in various physiological conditions. Calcif Tissue Int. 1991 Jul; 49(1): 53-57.

[24]

Amano K., Miyake K., Borke J.L., McNeil P.L. Breaking biological barriers with a toothbrush. J Dent Res. 2007 Aug; 86(8): 769-774;

[25]

Amprino R., Engstrom A. Studies on X-ray absorption and diffraction of bone tissue. Acta Anatomica. 1952. — Vol. XV, Fasc. ½. 1-22.

[26]

Anderson E.J., Knothe Tate M.L. Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes. J Biomech. 2008 Jun; 41(8): 1736-1746.

[27]

Arnold J.S., Frost H.M., Buss R.O. The osteocyte as a bone pump. Clin Orthop Relat Res. 1971; 78: 47-55

[28]

Ascenzi A., Bonucci E., Bocciarelli Ds. An electron microscope study of osteon calcification. J Ultrastruct Res. 1965 Apr; 12: 287-303.

[29]

Baud C.A. Submicroscopic structure and functional aspects of the osteocyte. Clin Orthop Relat Res. 1968 Jan-Feb; 56: 227-36.

[30]

Belanger L.F. Osteocytic Osteolysis. Calcif Tissue Res. 1969; 4(1): 1-12.

[31]

Bell K.L., Loveridge N., Jordan G.R., Power J., Constant C.R., Reeve J. A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture. Bone. 2000; 27(2): 297-304.

[32]

Boppart M.D., Kimmel D.B., Yee J.A., Cullen D.M. Time course of osteoblast appearance after in vivo mechanical loading. Bone. 1998 Nov; 23(5): 409-15.

[33]

Borle A.B., Nichols N., Nichols G. Metabolic studies of bone in vitro I. Normal bone. J Biol Chem. 1960; 235: 1206-10.

[34]

Borle A.B., Nichols N., Nichols G. Metabolic studies of bone in vitro. II. The metabolic patterns of accretion and resorption. J Biol Chem. 1960; 235: 1211-4.

[35]

Boyde, A. The real response of bone to exercise. J Anatomy. 2003; 203(2): 173-89.

[36]

Buckwalter J.A., Glimcher M.J., Cooper R.R., Recker R. Bone biology. Part II: formation, form, modeling, remodeling, and regulation of cell function. Instr Course Lect. 1996; 45: 387-399.

[37]

Burr D.B., Martin R.B. Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am J Anat. 1989; 186(2): 186-216.

[38]

Burstein A.H., Reilly D.T., Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976; 58(1): 82-6;

[39]

Cheng B., Zhao S., Luo J., Sprague E., Bonewald L.F., Jiang J.X. Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 Cells. J Bone Miner Res. 2001; 16(2): 249-59.

[40]

Chestnut, III C.H. Медикаментозная терапия. Кальцитонин, бисфосфонаты и анаболические стероиды. В кн.: Риггз Б.Л., Мелтон III Л.Д. ред. Остеопороз. СПб., 2000. 423-36.

[41]

Clark I., Bélanger L. The effects of alterations in dietary magnesium on calcium, phosphate and skeletal metabolism. Calcif Tissue Res. 1967; 1(3): 204-18.

[42]

Cowin S.C. The significance of bone microstructure in mechanotransduction. J Biomech. 2007; 40 Suppl 1: S105-9;.

[43]

Cubo J., Casinos A. Mechanical properties and chemical composition of avian long bones. European J Morphology. 2000 Apr; 38(2): 112-21.

[44]

Dawson-Hughes, B. Профилактика. В кн.: Риггз Б.Л., Мелтон III Л.Д. ред. Остеопороз. СПб., 2000. 363-80.

[45]

de Margerie E., Robin J,-P., Verrier D., Cubo J., Groscolas R., Castanet J. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). J Experimental Biology. 2004; 207(5): 869-79.

[46]

Delmas P.D. Treatment of postmenopausal osteoporosis. Lancet. 2002; 359: 2018-26.

[47]

Dempster, D.W. Ремоделирование кости. В кн.: Риггз Б.Л., Мелтон III Л.Д. ред. Остеопороз. СПб., 2000. 85-108.

[48]

Dostert A., Heinzel T. Negative glucocorticoid receptor response elements and their role in glucocorticoid action. Current Pharmaceutical Design. 2004; 10(23): 2807-16.

[49]

Downey P.A., Siegel M.I. Bone biology and the clinical implications for osteoporosis. Physical Therapy. 2006; 86(1): 77-91.

[50]

Duriez J., Ghosez J.P., Flautre B. La resorption ou lyse periosteocytaire er son role possible dans la destruction du tissu osseux. Presse Med. 1965; 73(45): 2581-6.

[51]

Eriksen E.F., Melsen F., Mosekilde L. Медикаментозная терапия. Схемы лечения, стимулирующие костеобразование. В кн.: Риггз Б.Л., Мелтон III Л.Д., ред. Остеопороз. СПб., 2000. 437-70.

[52]

Feng J.Q., Ye L., Schiavi S. Do osteocytes contribute to phosphate homeostasis? Curr Opin Nephrol Hypertens. 2009; 18(4): 285-91.

[53]

Frost H.M. In vivo osteocyte death. J Bone Joint Surg Am. 1960; 42-A: 138-43.

[54]

Frost H.M. New targets for the studies of biomechanical, endocrinologic, genetic and pharmaceutical effects on bones: bone's "nephron equivalents", muscle, neuromuscular physiology. J Musculoskeletal Research. 2000; 4(2): 67-84.

[55]

Frost, H.M. Why the ISMNI and the Utah paradigm? Their role in skeletal and extraskeletal disorders. J Musculoskelet Neuronal Interact. 2000; 1(1): 5-9.

[56]

Frost H.M. Seeking genetic causes of "osteoporosis: " insights of the Utah paradigm of skeletal physiology. Bone. 2001 Nov; 29(5): 407-12.

[57]

Gallagher J.C. Медикаментозная терапия. Кальций и витамин D. В кн.: Риггз Б.Л., Мелтон III Л.Д. ред. Остеопороз. СПб., 2000. 403-22.

[58]

Hardiman D.A., O'Brien F.J., Prendergast P.J., Croke D.J., Staines A., Lee T.C. Tracking the changes in unloaded bone: morphology and gene expression. Europ J Morphology. 2005; 42(4/5): 208-16.

[59]

Hayes W.Q., Myers E.R. Биомеханика переломов. В кн.: Риггз Б.Л., Мелтон III Л.Д. ред. Остеопороз. СПб., 2000. 109-34.

[60]

Heller-Steinberg M. Ground substance, bone salts, and cellular activity in bone formation and destruction. Am J Anat. 1951; 89(3): 347-79;

[61]

Ingram R.T., Park Y.K., Clarke B.L., Fitzpatrick L.A. Age- and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. Possible involvement of osteocalcin in bone remodeling. J Clin Invest. 1994; 93(3): 989-97.

[62]

Ingram R.T., Collazo-Clavell M., Tiegs R., Fitzpatrick L.A. Paget's disease is associated with changes in the immunohistochemical distribution of noncollagenous matrix proteins in bone. J Clin Endocrinol Metab. 1996; 81(5): 1810-20.

[63]

Jowsey J., Riggs B.I., Kelly P.J. Mineral metabolism in osteocytes. Mayo Clin Proc. 1964; 39: 480-4.

[64]

Kim D.G., Brunski I.B., Nicolella D.P. Microstrain fields for cortical bone in uniaxial tension: optical analysis method. Proc Inst Mech Eng H. 2005; 219(2): 119-28.

[65]

Lanyon L., Skerry T. Postmenopausal osteoporosis as a failure of bone's adaptation to functional loading: a-hypothesis. J Bone Miner Res. 2001; 16(11): 1937-47.

[66]

Lawson А.С., Czernuszka J.T. Collagen-calcium phosphate composites. Proc. Instn. Mech. Engrs. 1998; 212, Pt H: 413-25.

[67]

Lipp W. Neuuntersuchungen des Knochengewebes. III. Histologisch erfaftbare Lebensau Berungen der Osteozyten in embryonalen Knochen des Menschen. Anat Anz. 1956; 102(18-21): 361-72.

[68]

Lipp W. Aminopeptidase in bone cells. J Histochem Cytochem. 1959; 7(3): 205.

[69]

Martin R.B. On the significance of remodeling space and activation rate changes in bone remodeling. Bone. 1991; 12(6): 391-400.

[70]

Martin R.B. Toward a unifying theory of bone remodeling. Bone. 2000; 26(1): 1-6.

[71]

Melton III L.J. Эпидемиология переломов. В кн.: Риггз Б.Л., Мелтон III Л.Д. ред. Остеопороз. СПб., 2000. 449-72.

[72]

Nichols G., Rogers P. Mechanisms for the transfer of calcium into and out of the skeleton. Pediatrics 1971; 47(1) Suppl 2: 211-28.

[73]

Orellana M.F., Smith A.K., Waller J.L., DeLeon E., Borke J.L. Plasma membrane disruption in orthodontic tooth movement in rats. J Dent Res. 2002; 81(1): 43-7.

[74]

Palumbo C., Palazzini S., Zaffe D., Marotti G. Osteocyte differentiation in the tibia of newborn rabbit: an ultrastractural study of the formation of cytoplasmic processes. Acta Anat (Basel). 1990; 137(4): 350-8.

[75]

Petrov N., Pollack S.R. Comparative analysis of diffusive and stress induced nutrient transport efficiency in the lacunar-canalicular system of osteons. Biorheology. 2003; 40(1-3): 347-53.

[76]

Remagen W., Caesar R., Heuck F. Elektronenmikroskopische und mikroradiographische Befunde am Knochen der mit Dihydrotachysterin behandelten Rattel. Virchows Arch A Pathol Pathol Anat. 1968; 345(3): 245-54.

[77]

Revell P.A., al-Saffar N., Kobayashi A. Biological reaction to debris in relation to joint prostheses. 1997; 211(2): 187-97.

[78]

Rubin C.T. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984; 66(3): 397-402

[79]

Rubin C.T., Gross T.S., McLeod K.J., Bain S.D. Morphologic stages in lamellar bone formation stimulated by a potent mechanical stimulus. J Bone Miner Res. 1995; 10(3): 488-95.

[80]

Schaffler M.B., Burr D.B. Stiffness of compact bone: Effects of porosity and density. J Biomech. 1988; 21(1): 13-6; Цитировано по Martin R.B. [1991].

[81]

Skedros J.G., Grunander T.R., Hamrick M.W. John G. Spatial distribution of osteocyte lacunae in equine radii and third metacarpals: considerations for cellular communication, microdamage detection and metabolism. Cells Tissues Organs. 2005; 180(4): 215-36.

[82]

Skerry T.M., Suswillo R., el Haj A.J., Ali N.N., Dodds R.A., Lanyon L.E. Load-induced proteoglycan orientation in bone tissue in vivo and in vitro. Calcif Tissue Int. 1990; 46(5): 318-26.

[83]

Skerry T.M., Suva L.J. Investigation of the regulation of bone mass by mechanical loading: from quantitative cytochemistry to gene array. Cell Biochem Funct. 2003; 21(3): 223-9.

[84]

Skerry T.M. The response of bone to mechanical loading and disuse: Fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys. 2008; 473(2): 117-23.

[85]

Skerry T.M., Lanyon L.E. Systemic and contralateral responses to loading of bones. J Bone Miner Res. 2009; 24(4): 753.

[86]

Stringa E., Filanti C., Giunciuglio D., Albini A., Manduca P. Osteoblastic cells from rat long bone. I. Characterization of their differentiation in culture. Bone. 1995 Jun; 16(6): 663-70

[87]

Tami A.E., Schaffler M.B., Knothe Tate M.L., Probing the tissue to subcellular level structure underlying bone's molecular sieving function. Biorheology. 2003; 40(6): 577-90;

[88]

Taylor T.G., Belanger L.F. The mechanism of bone resorption in laying hens. Calcif Tissue Res. 1969; 4(2): 162-73.

[89]

Turner C.H. Editorial: do estrogens increase bone formation? Bone. 1991; 12(5): 305-6.

[90]

Turner C.H. Homeostatic control of bone structure: an application feedback theory. Bone. 1991; 12(3): 203-17.

[91]

Turner, C.H. Forwood M.R., Rho J.Y., Yoshikawa T. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res. 1994; 9(1): 87-97;

[92]

Turner C.H., Takano Y., Owan I. Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res. 1995; 10(10): 1544-9.

[93]

Wang X., Li X., Shen X., Agrawal C.M. Age-related changes of noncalcified collagen in human cortical bone. Ann Biomed Eng. 2003; 31(11): 1365-71.

[94]

Wang X., Puram S. The toughness of cortical bone and its relationship with age. Ann Biomed Eng. 2004; 32(1): 123-35.

[95]

Weiner S., Traub W. Bone structure: from angstroms to microns. FASEB J. 1992 Feb; 6(3): 879-85;

[96]

Wolff J. Das Gesetz der Transformation der inneren Architektur der Knochen bei pathologischen Veränderungen der äusseren Knochenform. Sitzungsberichte der Königlich Preussischen Akadkmie der Wissenschaften zu Berlin. Sitzung der phys. - math. Classe v. 21. April. — Mittheilung v. 13. Man. 1884, 23 s.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/