Deproteinized Bone Tissue as a Matrix for Tissue-Engineered Construction: Experimental Study
Evgeniya A. Anastasieva , Liliya A. Cherdantseva , Tatyana G. Tolstikova , Irina A. Kirilova
Traumatology and Orthopedics of Russia ›› 2023, Vol. 29 ›› Issue (1) : 46 -59.
Deproteinized Bone Tissue as a Matrix for Tissue-Engineered Construction: Experimental Study
Background. At present, for a number of reasons the complete bone defect replacement with autogenous bone is not always possible. Bone substitute materials are used as an alternative to autogenous bone tissue and can be of either biological or non-biological origin. One of the ways of development of reconstructive technologies is the use of tissue-engineered constructs that fully imitate autogenous bone tissue in the required volume.
Aim of study — to define in vivo the possibility of using deproteinized human cancellous bone tissue as a matrix for creating tissue-engineered constructs.
Methods. An in vivo study was carried out on NZW rabbits. To create a construct, we used the fragments of deproteinized cancellous bone tissue of the human femoral head and stromal vascular fraction of rabbit adipose tissue as a matrix. Bone defect modeling with its subsequent replacement was performed to evaluate the efficacy of reparative osteogenesis during bone defects’ reconstruction. Study groups were defined: group 1 (control) — surgical modeling of a bone defect of the femur without its reconstruction; group 2 — surgical modeling of a bone defect of the femur with its reconstruction using fragments of deproteinized cancellous bone matrix; group 3 — surgical modeling of a bone defect of the femur with its reconstruction using fragments of deproteinized cancellous bone matrix in combination with stromal vascular fraction of adipose tissue (according to ACP SVF technology).
Results. Comparative analysis of reparative processes in case of applying tissue-engineered constructs based on deproteinized human cancellous bone matrix in combination with adipose tissue-derived stromal vascular fraction on in vivo experimental model revealed that the use of these bone substitute materials contributes not only to an early activation of reparative regeneration of main structural elements of the bone tissue in the area of the bone defect replacement, but also to its well-timed differentiation. This determines the restoration of structural and functional viability of the bone tissue at the damage site without developing discernible reactive inflammation. Moreover, the effect of the selected tissue-engineered construct with the combined influence of several factors (ACP SVF) in its composition turned out to be more effective in stimulating bone tissue repair and differentiation.
Conclusion. Combination of SVF and deproteinized bone matrix for creating tissue-engineered constructs enables to engage several regeneration mechanisms and accelerate the process of bone defect replacement in comparison with isolated deproteinized bone matrix without bone defect reconstruction.
tissue-engineered construct / bone defect / bone matrix / deproteinized cancellous bone / bone defect replacement / adipose tissue-derived stromal vascular fraction
| [1] |
Gurazhev M.B., Baitov V.S., Gavrilov A.A., Pavlov V.V., Korytkin A.A. [Methods of the Tibia Bone Defect in Primary Knee Arthroplasty: Systematic Review]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2021;27(3):173-188. (In Russian). doi: 10.21823/2311-2905-2021-27-3-173-188. |
| [2] |
Гуражев М.Б., Баитов В.С., Гаврилов А.Н., Павлов В.В., Корыткин А.А. Методы замещения костного дефицита большеберцовой кости при первичном эндопротезировании коленного сустава: систематический обзор литературы. Травматология и ортопедия России. 2021;27(3):173-188. doi: 10.21823/2311-2905-2021-27-3-173-188. |
| [3] |
Stewart S.K. Fracture non-union: a review of clinical challenges and future research needs. Malaysian Orthop J. 2019;13(2):1-10. doi: 10.5704%2FMOJ.1907.001. |
| [4] |
Kirilova I.A., Podorozhnaya V.T. Comparative characteristics of materials for bone grafting: composition and properties. In: Physicochemical and mechanical properties of the extracellular matrix as signals for controlling proliferation, differentiation, motility and taxis of cells. Moscow: FIZMATLIT; 2021. p. 27-54. (In Russian). |
| [5] |
Кирилова И.А., Подорожная В.Т. Сравнительная характеристика материалов для костной пластики: состав и свойства. В кн.: Физико-химические и механические свойства внеклеточного матрикса как сигналы для управления пролиферацией, дифференцировкой, подвижностью и таксисом клеток. Москва: ФИЗМАТЛИТ; 2021. с. 27-54. |
| [6] |
Shastov A.L., Kononovich N.A., Gorbach E.N. [Management of posttraumatic long bone defects in the national and foreign orthopedic practice (literature review)]. Genij Ortopedii [Orthopaedic Genius]. 2018;24(2):252-257. (In Russian). doi: 10.18019/1028-4427-2018-24-2-252-257. |
| [7] |
Шастов А.Л., Кононович Н.А., Горбач Е.Н. Проблема замещения посттравматических дефектов длинных костей в отечественной травматолого-ортопедической практике (обзор литературы). Гений ортопедии. 2018;24(2):252-257. doi: 10.18019/1028-4427-2018-24-2-252-257. |
| [8] |
Wang W., Yeung K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224-247. doi: 10.1016/j.bioactmat.2017.05.007. |
| [9] |
Korytkin A.A., Zakharova D.V., Novikova Ya.S., Gorbatov R.O., Kovaldov K.A., El Moudni Y.M. [Custom Triflange Acetabular Components in Revision Hip Replacement (experience Review)]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2017;23(4):101-111. (In Russian). doi: 10.21823/2311-2905-2017-23-4-101-111. |
| [10] |
Корыткин А.А., Захарова Д.В., Новикова Я.С., Горбатов Р.О., Ковалдов К.А., Эль Мудни Ю.М. Опыт применения индивидуальных трехфланцевых вертлужных компонентов при ревизионном эндопротезировании тазобедренного сустава. Травматология и ортопедия России. 2017;23(4): 101-111. doi: 10.21823/2311-2905-2017-23-4-101-111. |
| [11] |
Tikhilov R.M., Dzhavadov A.A.. Denisov A.O., Сhililov A.M., Cherkasov M.A., Bilyk S.S. et al. [Cost-effectiveness analysis of custom-made and serial acetabular components in revision hip arthroplasty]. Genij Ortopedii [Orthopaedic Genius]. 2022;28(2):234-240. (In Russian). doi: 10.18019/1028-4427-2022-28-2-234-240. |
| [12] |
Тихилов Р.М., Джавадов А.А., Денисов А.О., Чилилов А.М., Черкасов М.А., Билык С.С. и др. Анализ экономической эффективности использования индивидуальных и серийных вертлужных конструкций при ревизионном эндопротезировании тазобедренного сустава. Гений ортопедии. 2022;28(2):234-240. doi: 10.18019/1028-4427-2022-28-2-234-240. |
| [13] |
Yu X., Tang X., Gohil S.V., Laurencin C.T. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015;4(9):1268-1285. doi: 10.1002/adhm.201400760. |
| [14] |
Hrapkiewicz K., Colby L. A., Denison P. Clinical laboratory animal medicine: an introduction. John Wiley & Sons; 2013. 431 p. |
| [15] |
Liu E., Fan J. Fundamentals of Laboratory Animal Science. CRC Press; 2017. 352 p. |
| [16] |
Heuther S. Obesity and disorders of nutrition. In: Brashers V.L. et al. (ed.). Pathophysiology: the biologic basis for disease in adults and children. 8th edition. Elsevier; 2018. p 2268-2313. |
| [17] |
Baljit S. Part I. General anatomy. In: Baljit S. ed. Dyce, Sack, and Wensing’s textbook of veterinary anatomy. London: Elsevier; 2017 (Ed. 5). p. 1-28. |
| [18] |
Oedayrajsingh-Varma M.J., Van Ham S.M., Knippenberg M., Helder M.N., Klein-Nulend J., Schouten T.E. et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8(2):166-177. doi: 10.1080/14653240600621125. |
| [19] |
Baer P.C., Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int. 2012;2012:812693. doi: 10.1155/2012/812693. |
| [20] |
Permuy M., López-Peña M., Muñoz F., González-Cantalapiedra A. Rabbit as model for osteoporosis research. J Bone Miner Metab. 2019;37(4):573-583. doi: 10.1007/s00774-019-01007-x. |
| [21] |
Podorozhnaya V.T., Sadovoi M.A., Kirilova I.A., Sharkeev Yu.P., Legostaeva E.V. [Allogeneic bone materials: structure, properties, application]. Izvestiya vysshikh uchebnykh zavedenii. Fizika [Russian Physics Journal]. 2013;56(12-3):14-20. (In Russian). |
| [22] |
Подорожная В.Т., Садовой М.А., Кирилова И.А., Шаркеев Ю.П., Легостаева Е.В. Аллогенные костные материалы: структура, свойства, применение. Известия высших учебных заведений. Физика. 2013;56(12-3):14-20. |
| [23] |
Cherdantseva L.A., Anastasieva E.A., Aleynik D.Ya., Egorikhina M.N., Kirilova I.A. [In Vitro Evaluation of the Allogeneic Bone Matrix Effect on the Adipose Mesenchymal Stromal Cells Characteristics in Combined Tissue Engineering]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2021;27(1):53-65. (In Russian). doi: 10.21823/2311-2905-2021-27-1-53-65. |
| [24] |
Черданцева Л.А., Анастасиева Е.А., Алейник Д.Я., Егорихина М.Н., Кирилова И.А. Оценка in vitro влияния аллогенной костной матрицы на характеристики мезенхимальных стромальных клеток из жировой ткани при создании комбинированных тканеинженерных конструкций. Травматология и ортопедия России. 2021;27(1):53-65. doi: 10.21823/2311-2905-2021-27-1-53-65. |
| [25] |
Vorobyоv K.A., Bozhkova S.A., Tikhilov R.M., Cherny A.Zh. [Current Methods of Processing and Sterilization of Bone Allografts (Review of Literature)]. Travmatologiya i ortopediya Rossii [Traumatology and Orthopedics of Russia]. 2017;23(3):134-147. (In Russian). doi: 10.21823/2311-2905-2017-23-3-134-147. |
| [26] |
Воробьев К.А., Божкова С.А., Тихилов Р.М., Черный А.Ж. Современные способы обработки и стерилизации аллогенных костных тканей (обзор литературы). Травматология и ортопедия России. 2017;23(3): 134-147. doi: 10.21823/2311-2905-2017-23-3-134-147. |
| [27] |
Vorobyov K.A., Bozhkova S.A., Anisimova L.I., Netylko G.I. [Effect of the osteoplastic material processing methods on the remodeling in the experimental bone defect model in vivo]. Prakticheskaya meditsina [Practical medicine]. 2019;17(1):67-72. (In Russian). |
| [28] |
Воробьёв К.А., Божкова С.А., Анисимова Л.И., Нетылько Г.И. Влияние методов заготовки костнопластического материала на процессы ремоделирования в модели костного дефекта в эксперименте in vivo. Практическая медицина. 2019;17(1):67-72. |
| [29] |
Kirilova I.A. [Anatomical and functional properties of bone as the basis for the creation of osteoplastic materials for traumatology and orthopedics]. Moscow: FIZMATLIT; 2019. 256 p. (In Russian). |
| [30] |
Кирилова И.А. Анатомо-функциональные свойства кости как основа создания костно-пластических материалов для травматологии и ортопедии. М.: ФИЗМАТЛИТ; 2019. 256 p. |
| [31] |
Sharun K., Pawde A.M., Kumar R., Kalaiselvan E., Kinjavdekar P., Dhama K. et al. Standardization and characterization of adipose-derived stromal vascular fraction from New Zealand white rabbits for bone tissue engineering. Vet World. 2021;14(2):508-514. doi: 10.14202/vetworld.2021.508-514. |
| [32] |
Guo J., Nguyen A., Banyard D.A., Fadavi D., Toranto J.D., Wirth G.A. et al. Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action. J Plast Reconstr Aesthet Surg. 2016;69(2):180-188. doi: 10.1016/j.bjps.2015.10.014. |
| [33] |
Bora P., Majumdar A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8(1):145. doi: 10.1186/s13287-017-0598-y. |
| [34] |
Gentile P., Sterodimas A., Pizzicannella J., Dionisi L., De Fazio D., Calabrese C. et al. Systematic Review: Allogenic Use of Stromal Vascular Fraction (SVF) and Decellularized Extracellular Matrices (ECM) as Advanced Therapy Medicinal Products (ATMP) in Tissue Regeneration. Int J Mol Sci. 2020;21(14):4982. doi: 10.3390/ijms21144982. |
| [35] |
Pavlov V.N., Kazikhinurov A.A., Kazikhinurov R.A., Pushkarev A.M., Agaverdiev M.A., Maximova S.Yu. et al. [Modern possibilities of clinical application of the adipose tissue-derived stromal vascular fraction. Literature review]. Meditsinskii vestnik Bashkortostana [Bashkortostan Medical Journal]. 2020;15(6(90)):142-153. (In Russian). |
| [36] |
Павлов В.Н., Казихинуров А.А., Казихинуров Р.А., Пушкарев А.М., Агавердиев М.А., Максимова С.Ю. и др. Современные возможности клинического применения стромально-васкулярной фракции жировой ткани. Медицинский вестник Башкортостана. 2020;15(6 (90)):142-153. |
| [37] |
Khominets V.V., Vorobev K.A., Sokolova M.O., Ivanova A.K., Komarov A.V. [Allogenic osteoplastic materials for reconstructive surgery of combat injuries]. Izvestiya Rossiiskoi Voenno-meditsinskoi akademii [Russian Military Medical Academy Reports]. 2022;41(3):309-314. doi: 10.17816/rmmar109090. |
| [38] |
Хоминец В.В., Воробьев К.А., Соколова М.О., Иванова А.К., Комаров А.В. Аллогенные остеопластические материалы для реконструктивной хирургии боевых травм. Известия Российской Военно-медицинской академии. 2022;41(3):309-314. doi: 10.17816/rmmar109090. |
| [39] |
Elgali I., Turri A., Xia W., Norlindh B., Johansson A., Dahlin C. et al. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomater. 2016;29:409-423. doi: 10.1016/j.actbio.2015.10.005. |
Eco-Vector
/
| 〈 |
|
〉 |